Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes

Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to dis asters (e.g., habitat destruction, environmental catastrophes). Many stochastic mo...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 4; no. 4; pp. 573 - 594
Main Authors Artalejo, J R, Economou, A, Lopez-Herrero, M J
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.10.2007
Subjects
Online AccessGet full text
ISSN1547-1063
1551-0018
1551-0018
DOI10.3934/mbe.2007.4.573

Cover

More Information
Summary:Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to dis asters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.
ISSN:1547-1063
1551-0018
1551-0018
DOI:10.3934/mbe.2007.4.573