Water equivalent path length calculations using scatter-corrected head and neck CBCT images to evaluate patients for adaptive proton therapy

Proton therapy has dosimetric advantages due to the well-defined range of the proton beam over photon radiotherapy. When the proton beams, however, are delivered to the patient in fractionated radiation treatment, the treatment outcome is affected by delivery uncertainties such as anatomic change in...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 62; no. 1; pp. 59 - 72
Main Authors Kim, Jihun, Park, Yang-Kyun, Sharp, Gregory, Busse, Paul, Winey, Brian
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.01.2017
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/62/1/59

Cover

More Information
Summary:Proton therapy has dosimetric advantages due to the well-defined range of the proton beam over photon radiotherapy. When the proton beams, however, are delivered to the patient in fractionated radiation treatment, the treatment outcome is affected by delivery uncertainties such as anatomic change in the patient and daily patient setup error. This study aims at establishing a method to evaluate the dosimetric impact of the anatomic change and patient setup error during head and neck proton therapy. Range variations due to the delivery uncertainties were assessed by calculating water equivalent path length (WEPL) to the distal edge of tumor volume using planning CT and weekly treatment cone-beam CT (CBCT) images. Specifically, mean difference and root mean squared deviation (RMSD) of the distal WEPLs were calculated as the weekly range variations. To accurately calculate the distal WEPLs, an existing CBCT scatter correction algorithm was used. An automatic rigid registration was used to align the planning CT and treatment CBCT images, simulating a six degree-of-freedom couch correction at treatments. The authors conclude that the dosimetric impact of the anatomic change and patient setup error was reasonably captured in the differences of the distal WEPL variation with a range calculation uncertainty of 2%. The proposed method to calculate the distal WEPL using the scatter-corrected CBCT images can be an essential tool to decide the necessity of re-planning in adaptive proton therapy.
Bibliography:PMB-104468.R1
Institute of Physics and Engineering in Medicine
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/62/1/59