Hierarchical Spatio-Temporal Modeling of Naturalistic Functional Magnetic Resonance Imaging Signals via Two-Stage Deep Belief Network With Neural Architecture Search
Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the...
        Saved in:
      
    
          | Published in | Frontiers in neuroscience Vol. 15; p. 794955 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          Frontiers Media S.A
    
        08.12.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1662-453X 1662-4548 1662-453X  | 
| DOI | 10.3389/fnins.2021.794955 | 
Cover
| Abstract | Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects’ microsleeps during resting state. Recent studies have made efforts on characterizing the brain’s hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm. | 
    
|---|---|
| AbstractList | Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects’ microsleeps during resting state. Recent studies have made efforts on characterizing the brain’s hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm. Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects' microsleeps during resting state. Recent studies have made efforts on characterizing the brain's hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects' microsleeps during resting state. Recent studies have made efforts on characterizing the brain's hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.  | 
    
| Author | Tao, Zeyang He, Xiaowei Xu, Shuhan Ren, Yudan Song, Limei  | 
    
| AuthorAffiliation | School of Information Science and Technology, Northwest University , Xi’an , China | 
    
| AuthorAffiliation_xml | – name: School of Information Science and Technology, Northwest University , Xi’an , China | 
    
| Author_xml | – sequence: 1 givenname: Yudan surname: Ren fullname: Ren, Yudan – sequence: 2 givenname: Shuhan surname: Xu fullname: Xu, Shuhan – sequence: 3 givenname: Zeyang surname: Tao fullname: Tao, Zeyang – sequence: 4 givenname: Limei surname: Song fullname: Song, Limei – sequence: 5 givenname: Xiaowei surname: He fullname: He, Xiaowei  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34955738$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFks1u1DAUhSNURH_gAdggL9lkcOzEPxukUigdqbQSMwh2lse5ybhk7DRxOuoD8Z7YnVK1LGCV-Obc79yb48Nsz3kHWfa6wDNKhXzXOOvGGcGkmHFZyqp6lh0UjJG8rOiPvUfv-9nhOF5hzIgoyYtsnyYxp-Ig-3VmYdCDWVujO7TodbA-X8Km90M8f_E1dNa1yDfoQocp1uwYrEGnkzNR6ZJGtw5S7SuMseAMoPlGt6lrYduoGNGN1Wi59fki6BbQR4AefYhciFAIWz_8RN9tWMdDMkDHaZoAJtoBWkAa7mX2vIkgeHX_PMq-nX5anpzl55ef5yfH57kpWRVyTlesog0AYSuCm1LLmuBCC24aWtJaGCl4U2JOJSNSrvgKdFlXmMoaBMVU06NsvuPWXl-pfrAbPdwqr626K_ihVXqIu3agNGWGAy4qIXAJEqQhhBJW1aKoGatYZJEda3K9vt3qrnsAFlil_NRdfirlp3b5xab3u6Z-Wm2gNuBC_CVPJnn6xdm1av2NEkySipUR8PYeMPjrCcagNnY00HXagZ-iGStKHqMnPErfPPZ6MPlzOaKA7wRm8OM4QKOMDemCJGvb_XON4q_O_6_-GxT041g | 
    
| CitedBy_id | crossref_primary_10_1523_ENEURO_0200_22_2022 crossref_primary_10_1088_1361_6501_ad14e2 crossref_primary_10_1109_TCDS_2023_3287184 crossref_primary_10_1016_j_compmedimag_2024_102441 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1162_netn_a_00334  | 
    
| Cites_doi | 10.1162/neco.2006.18.7.1527 10.1109/72.761722 10.1109/tmi.2017.2715285 10.3389/neuro.11.037.2009 10.1016/j.neuroimage.2015.07.069 10.1016/s1053-8119(03)00435-x 10.1109/tcds.2019.2916916 10.1037/0033-2909.86.2.420 10.1002/hbm.20663 10.1109/TBME.2021.3102466 10.1016/j.media.2021.101974 10.1016/j.tics.2019.05.004 10.1145/1756006.1756008 10.1093/scan/nsz037 10.1109/ICNN.1995.488968 10.1126/science.1089506 10.1037/1082-989X.1.1.30v 10.1093/cercor/bhk030 10.1007/978-3-642-33275-3_2 10.1016/j.compmedimag.2020.101747 10.1371/journal.pone.0190097 10.1038/s41598-017-11324-8 10.1007/s11682-021-00469-w 10.1002/hbm.24005 10.1016/j.neuroimage.2012.03.027 10.1109/memb.2006.1607672 10.1016/j.media.2014.10.011  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Ren, Xu, Tao, Song and He. Copyright © 2021 Ren, Xu, Tao, Song and He. 2021 Ren, Xu, Tao, Song and He  | 
    
| Copyright_xml | – notice: Copyright © 2021 Ren, Xu, Tao, Song and He. – notice: Copyright © 2021 Ren, Xu, Tao, Song and He. 2021 Ren, Xu, Tao, Song and He  | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3389/fnins.2021.794955 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1662-453X | 
    
| ExternalDocumentID | oai_doaj_org_article_a36c7e0158804e9e9c223265d81d6656 10.3389/fnins.2021.794955 PMC8692564 34955738 10_3389_fnins_2021_794955  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: ; | 
    
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A IAO IEA IHR ISR M~E NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c465t-73b653fee26b20f4a9d201a87cf343d8c987f407396299b7bea4d5039de8303a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1662-453X 1662-4548  | 
    
| IngestDate | Fri Oct 03 12:29:43 EDT 2025 Sun Oct 26 03:56:11 EDT 2025 Tue Sep 30 16:29:38 EDT 2025 Thu Oct 02 03:24:55 EDT 2025 Thu Jan 02 22:55:18 EST 2025 Wed Oct 01 02:21:39 EDT 2025 Thu Apr 24 22:58:39 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | deep belief network functional brain network (FBN) neural architecture search naturalistic fMRI hierarchical organization of brain function  | 
    
| Language | English | 
    
| License | Copyright © 2021 Ren, Xu, Tao, Song and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c465t-73b653fee26b20f4a9d201a87cf343d8c987f407396299b7bea4d5039de8303a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Xi Jiang, University of Electronic Science and Technology of China, China This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Reviewed by: Qing Li, Beijing Normal University, China; Lin Zhao, University of Georgia, United States  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.794955 | 
    
| PMID | 34955738 | 
    
| PQID | 2614757327 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a36c7e0158804e9e9c223265d81d6656 unpaywall_primary_10_3389_fnins_2021_794955 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8692564 proquest_miscellaneous_2614757327 pubmed_primary_34955738 crossref_citationtrail_10_3389_fnins_2021_794955 crossref_primary_10_3389_fnins_2021_794955  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-12-08 | 
    
| PublicationDateYYYYMMDD | 2021-12-08 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-08 day: 08  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland | 
    
| PublicationTitle | Frontiers in neuroscience | 
    
| PublicationTitleAlternate | Front Neurosci | 
    
| PublicationYear | 2021 | 
    
| Publisher | Frontiers Media S.A | 
    
| Publisher_xml | – name: Frontiers Media S.A | 
    
| References | Meunier (B19) 2009; 3 Hasson (B7) 2004; 303 Real (B23) 2019 Guo (B6) 2012; 61 Hinton (B8) 2006; 18 Kennedy (B12) 1995 Zhang (B30) Ferrarini (B3) 2009; 30 Qiang (B21) Huang (B10) 2018; 37 Golland (B5) 2007; 17 Fischer (B4) 2012; 7441 Mairal (B17) 2010; 11 Hyvarinen (B11) 1999; 10 Calhoun (B2) 2006; 25 Vanderwal (B28) 2015; 122 Sonkusare (B27) 2019; 23 Ren (B24) 2017; 12 Qiang (B22); 83 Mcgraw (B18) 1996; 1 Beckmann (B1) 2003; 20 Zhao (B31) 2021 Zhao (B32) 2020; 12 Hu (B9) 2018; 39 Lv (B16) 2015; 20 Zhang (B29) Li (B14); 69 Shrout (B26) 1979; 86 Ren (B25) 2017; 7 Li (B13); 15 Li (B15); 2021 Nastase (B20) 2019; 14  | 
    
| References_xml | – volume: 18 start-page: 1527 year: 2006 ident: B8 article-title: A fast learning algorithm for deep belief nets. publication-title: Neural Computat. doi: 10.1162/neco.2006.18.7.1527 – ident: B29 article-title: A TWO-STAGE DBN-BASED METHOD TO EXPLORING FUNCTIONAL BRAIN NETWORKS IN NATURALISTIC PARADIGM FMRI publication-title: 16th IEEE International Symposium on Biomedical Imaging (ISBI) – volume: 10 start-page: 626 year: 1999 ident: B11 article-title: Fast and robust fixed-point algorithms for independent component analysis. publication-title: IEEE Transact. Neural Netw. doi: 10.1109/72.761722 – volume: 37 start-page: 1551 year: 2018 ident: B10 article-title: Modeling Task fMRI Data Via Deep Convolutional Autoencoder. publication-title: IEEE Transact. Med. Imaging doi: 10.1109/tmi.2017.2715285 – volume: 3 year: 2009 ident: B19 article-title: Hierarchical modularity in human brain functional networks. publication-title: Front. Neuroinformat. doi: 10.3389/neuro.11.037.2009 – volume: 122 start-page: 222 year: 2015 ident: B28 article-title: Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.069 – ident: B30 article-title: Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net publication-title: 10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) – volume: 20 start-page: 1052 year: 2003 ident: B1 article-title: General multilevel linear modeling for group analysis in FMRI. publication-title: Neuroimage doi: 10.1016/s1053-8119(03)00435-x – volume: 12 start-page: 451 year: 2020 ident: B32 article-title: Four-Dimensional Modeling of fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNNs). publication-title: IEEE Transact. Cognit. Dev. Syst. doi: 10.1109/tcds.2019.2916916 – volume: 86 start-page: 420 year: 1979 ident: B26 article-title: Intraclass correlations: uses in assessing rater reliability. publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 30 start-page: 2220 year: 2009 ident: B3 article-title: Hierarchical functional modularity in the resting-state human brain. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20663 – volume: 2021 ident: B15 article-title: Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition. publication-title: IEEE Transact. Biomedical Engine. doi: 10.1109/TBME.2021.3102466 – year: 2021 ident: B31 article-title: Exploring the Functional Difference of Gyri/Sulci via Hierarchical Interpretable Autoencoder publication-title: 24th International Conference on Medical Image Computing and Computer Assisted Interventio(MICCAI) – volume: 69 ident: B14 article-title: Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition. publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101974 – volume: 23 start-page: 699 year: 2019 ident: B27 article-title: Naturalistic Stimuli in Neuroscience: Critically Acclaimed. publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2019.05.004 – volume: 11 start-page: 19 year: 2010 ident: B17 article-title: Online Learning for Matrix Factorization and Sparse Coding. publication-title: J. Machine Learn. Res. doi: 10.1145/1756006.1756008 – volume: 14 start-page: 669 year: 2019 ident: B20 article-title: Measuring shared responses across subjects using intersubject correlation. publication-title: Soc. Cognit. Affect. Neurosci. doi: 10.1093/scan/nsz037 – year: 1995 ident: B12 article-title: Particle Swarm Optimization publication-title: ICNN′95 - International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – volume: 303 start-page: 1634 year: 2004 ident: B7 article-title: Intersubject synchronization of cortical activity during natural vision. publication-title: Science doi: 10.1126/science.1089506 – volume: 1 year: 1996 ident: B18 article-title: Forming inferences about some intraclass correlation coefficients. publication-title: Psychol. Methods doi: 10.1037/1082-989X.1.1.30v – volume: 17 start-page: 766 year: 2007 ident: B5 article-title: Extrinsic and Intrinsic Systems in the Posterior Cortex of the Human Brain Revealed during Natural Sensory Stimulation. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhk030 – volume: 7441 start-page: 14 year: 2012 ident: B4 article-title: An Introduction to Restricted Boltzmann Machines. publication-title: Springer doi: 10.1007/978-3-642-33275-3_2 – volume: 83 ident: B22 article-title: Modeling task-based fMRI data via deep belief network with neural architecture search. publication-title: Computerized Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101747 – volume: 12 year: 2017 ident: B24 article-title: Sparse coding reveals greater functional connectivity in female brains during naturalistic emotional experience. publication-title: PLoS One doi: 10.1371/journal.pone.0190097 – volume: 7 year: 2017 ident: B25 article-title: Inter-subject Functional Correlation Reveal a Hierarchical Organization of Extrinsic and Intrinsic Systems in the Brain. publication-title: Sci. Rep. doi: 10.1038/s41598-017-11324-8 – volume: 15 start-page: 2646 ident: B13 article-title: Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder. publication-title: Brain Imaging Behav. doi: 10.1007/s11682-021-00469-w – volume: 39 start-page: 2368 year: 2018 ident: B9 article-title: Latent source mining in FMRI via restricted Boltzmann machine. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24005 – volume: 61 start-page: 1471 year: 2012 ident: B6 article-title: One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.027 – ident: B21 article-title: Deep Variational Autoencoder for Modeling Functional Brain Networks and Adhd Identification publication-title: IEEE 17th International Symposium on Biomedical Imaging (ISBI) – volume: 25 start-page: 79 year: 2006 ident: B2 article-title: Unmixing fMRI with independent component analysis - Using ICA to characterize high-dimensional fMRI data in a concise manner. publication-title: IEEE Engine. Med. Biol. Magaz. doi: 10.1109/memb.2006.1607672 – year: 2019 ident: B23 article-title: Regularized Evolution for Image Classifier Architecture Search publication-title: 33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence – volume: 20 start-page: 112 year: 2015 ident: B16 article-title: Sparse representation of whole-brain fMRI signals for identification of functional networks. publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.10.011  | 
    
| SSID | ssj0062842 | 
    
| Score | 2.3317144 | 
    
| Snippet | Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 794955 | 
    
| SubjectTerms | deep belief network functional brain network (FBN) hierarchical organization of brain function naturalistic fMRI neural architecture search Neuroscience  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmkPGQkxAEUmsSOHR9bYLUgtZduRW-R44y3kdLsCu1S9QfxP5mxd5ddgeiFax5-ZL54Ptvjbxh7o9GHNXkBqbTCpTL3WWpLD6kHmVcZiLYNOtsnp2p8Lr9elBdbqb4oJizKA8cPd2iFchrQaSHQJBgwDh1aocoWiZZCMkKjb1aZ9WQqjsEKB90i7mHiFMwc-qEbSJu7yD8g_gyd69vyQkGs_28M889AybvLYW5vrm3fb3mh0QN2f0Uf-VFs9kN2B4ZHbP9owKnz1Q1_y0NAZ1gp32c_xx2dLg7JTnp-FkKn00mUouo5JUGjo-h85vmpDeobQbOZj9DTxQVCfmKnAx1y5LTIT8ocwL9chbRG_KybkvIy_9FZPrmepUhap8A_Acz5MZYLWGgMMOffusUlJw2Q0O7f2xY8Rjo_Zuejz5OP43SVlSF1UpWLVItGlcIDFKopMi-taZFE2Eo7L6RoK2cq7SVtACp0dY1uwMq2zIRpoUJ_acUTtjfMBnjGeG5lkRkHKvdael01hRXW5c4B8si8UQnL1laq3UqynDJn9DVOXciwdTBsTYato2ET9m7zyjzqdfzr4WMy_eZBktoOFxCA9QqA9W0ATNjrNXBq_DVpv8UOMFtiTUh9dKlFoRP2NAJpU5Wg-rWoEqZ3ILbTlt07Q3cZ5L8rZZCnyoS934Dx9q4e_I-uPmf3qMgQzVO9YHuL70t4iZxs0bwKv98vAjg2pQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELage4AXBgxGxg8ZCfEASpfEjp08dkBVkFYhrRXlKXIcu4vo3Aq1TOP_4f_kzkm7FSYQ4i1NHTvWXXLf5e6-I-SFBBtWxokJuWI65LGNQpVaE1rD4ywyrKo8z_bxUAzG_MMknVyphcG0Soul-9gIunYNU3CbIoZPOHhU-aF1tUOq7STugjrlaXq4qOxNsiNSwOMdsjMefux9Rk9LYElQyiaXxzxrQpvXz7NlnDyH_3XA8_f8yVsrt1AX52o2u2Kc-rtEr7fV5KR86a6WZVd__4Xx8f_2fZfcabEr7TUX3CM3jLtP9noO_PazC_qS-mxS_5l-j_wY1Fja7DutzOiJz9sORw0P1oxiBzasg6dzS4fKU394wmjaBzPbfJ2kx2rqsMKSYoQBaUEMfX_meyrRk3qKtM_0W63o6HweAmKeGvrWmAU9gnkNTNpkt9NP9fKUIgGJv-_LmAlt0qwfkHH_3ejNIGxbQoSai3QZSlaKlFljElEmkeUqrwDBqExqyzirMp1n0nKMPgqws6UsjeJVGrG8MhkYa8Ueko6bO_OI0FjxJMq1EbGV3MqsTBRTOtbaAIiNSxGQaK0LhW750rFtx6wAvwnFUXhxFCiOohFHQF5tLlk0ZCF_GnyECrYZiDzf_gSIvmhFXygmtDQA2eA1y01ucg1wLhFpBW6GACgekOdr9SzgvYDBHuXMfAUrAe6SqWSJDMh-o66bpRiuL1kWELmlyFv3sv2Pq08993gmcgDJPCCvNyr_960e_NPox-Q2_vI5Q9kT0ll-XZmngPyW5bP20f4JBpJY9A priority: 102 providerName: Unpaywall  | 
    
| Title | Hierarchical Spatio-Temporal Modeling of Naturalistic Functional Magnetic Resonance Imaging Signals via Two-Stage Deep Belief Network With Neural Architecture Search | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34955738 https://www.proquest.com/docview/2614757327 https://pubmed.ncbi.nlm.nih.gov/PMC8692564 https://www.frontiersin.org/articles/10.3389/fnins.2021.794955/pdf https://doaj.org/article/a36c7e0158804e9e9c223265d81d6656  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJsFeEDA-wkdlJMQDKFsSO3bygFALmwpSq4m1YjxFjnPuImVpKS2jfxD_J2enLauoQOIpUpLaae6c-53v7neEvJBow_IwAp8rpn0emsBXsQHfAA-TAFhROJ7tXl90h_zjeXy-Q1btrZYv8NtW1872kxpOq8MfXxdvccG_sR4n2tsjU5e1Zd6OwkPUrjSOb5A9NFSp7eTQ4-uggsAvsQt-ClsohEi9CXJuH2Kf3GT26ApXrlksR-y_DY3-mVR5a15P1OJKVdU1i3Vyh9xeQk3abnTjLtmB-h45aNfoZl8u6Evqkj_drvoB-dktbSWya4xS0TOXZu0PGtqqitqGabZsnY4N7SvH1OH4nekJWsVmM5H21Ki2BZHUBgQsiwfQD5euBRI9K0f2bdPvpaKDq7GPAHcE9D3AhHZwXMBBm2R0-rmcXVDLF-Ke-3eIgzZZ0ffJ8OR48K7rLzs4-JqLeOZLlouYGYBI5FFguEoLBBwqkdowzopEp4k03AYLBZrFXOageBEHLC0gQduq2AOyW49reERoqHgUpBpEaCQ3MskjxZQOtQbEnGEuPBKspJTpJb257bJRZejmWBlnTsaZlXHWyNgjr9Y_mTTcHn-7uWNFv77R0nK7E-PpKFuu8kwxoSUgwsKvIocUUo3oKxJxgV6BQOTskecrxclwGdvYjKphPMeZECZJ1LZIeuRho0jrqVaK6BG5oWIbz7J5pS4vHFV4IlLEtNwjr9fK-O-_-vi_53lC9u04Lt0neUp2Z9M5PEPQNstbZK9z3D_91HKbHi23MPHcsH_a_vIL93RG4g | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELage4AXBgxGxg8ZCfEASpfEjp08dkBVkFYhrRXlKXIcu4vo3Aq1TOP_4f_kzkm7FSYQ4i1NHTvWXXLf5e6-I-SFBBtWxokJuWI65LGNQpVaE1rD4ywyrKo8z_bxUAzG_MMknVyphcG0Soul-9gIunYNU3CbIoZPOHhU-aF1tUOq7STugjrlaXq4qOxNsiNSwOMdsjMefux9Rk9LYElQyiaXxzxrQpvXz7NlnDyH_3XA8_f8yVsrt1AX52o2u2Kc-rtEr7fV5KR86a6WZVd__4Xx8f_2fZfcabEr7TUX3CM3jLtP9noO_PazC_qS-mxS_5l-j_wY1Fja7DutzOiJz9sORw0P1oxiBzasg6dzS4fKU394wmjaBzPbfJ2kx2rqsMKSYoQBaUEMfX_meyrRk3qKtM_0W63o6HweAmKeGvrWmAU9gnkNTNpkt9NP9fKUIgGJv-_LmAlt0qwfkHH_3ejNIGxbQoSai3QZSlaKlFljElEmkeUqrwDBqExqyzirMp1n0nKMPgqws6UsjeJVGrG8MhkYa8Ueko6bO_OI0FjxJMq1EbGV3MqsTBRTOtbaAIiNSxGQaK0LhW750rFtx6wAvwnFUXhxFCiOohFHQF5tLlk0ZCF_GnyECrYZiDzf_gSIvmhFXygmtDQA2eA1y01ucg1wLhFpBW6GACgekOdr9SzgvYDBHuXMfAUrAe6SqWSJDMh-o66bpRiuL1kWELmlyFv3sv2Pq08993gmcgDJPCCvNyr_960e_NPox-Q2_vI5Q9kT0ll-XZmngPyW5bP20f4JBpJY9A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Spatio-Temporal+Modeling+of+Naturalistic+Functional+Magnetic+Resonance+Imaging+Signals+via+Two-Stage+Deep+Belief+Network+With+Neural+Architecture+Search&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ren%2C+Yudan&rft.au=Xu%2C+Shuhan&rft.au=Tao%2C+Zeyang&rft.au=Song%2C+Limei&rft.date=2021-12-08&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=15&rft_id=info:doi/10.3389%2Ffnins.2021.794955&rft_id=info%3Apmid%2F34955738&rft.externalDocID=PMC8692564 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |