Hierarchical Spatio-Temporal Modeling of Naturalistic Functional Magnetic Resonance Imaging Signals via Two-Stage Deep Belief Network With Neural Architecture Search

Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 794955
Main Authors Ren, Yudan, Xu, Shuhan, Tao, Zeyang, Song, Limei, He, Xiaowei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 08.12.2021
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2021.794955

Cover

Abstract Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects’ microsleeps during resting state. Recent studies have made efforts on characterizing the brain’s hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.
AbstractList Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects’ microsleeps during resting state. Recent studies have made efforts on characterizing the brain’s hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.
Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects' microsleeps during resting state. Recent studies have made efforts on characterizing the brain's hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects' microsleeps during resting state. Recent studies have made efforts on characterizing the brain's hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.
Author Tao, Zeyang
He, Xiaowei
Xu, Shuhan
Ren, Yudan
Song, Limei
AuthorAffiliation School of Information Science and Technology, Northwest University , Xi’an , China
AuthorAffiliation_xml – name: School of Information Science and Technology, Northwest University , Xi’an , China
Author_xml – sequence: 1
  givenname: Yudan
  surname: Ren
  fullname: Ren, Yudan
– sequence: 2
  givenname: Shuhan
  surname: Xu
  fullname: Xu, Shuhan
– sequence: 3
  givenname: Zeyang
  surname: Tao
  fullname: Tao, Zeyang
– sequence: 4
  givenname: Limei
  surname: Song
  fullname: Song, Limei
– sequence: 5
  givenname: Xiaowei
  surname: He
  fullname: He, Xiaowei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34955738$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSNURH_gAdggL9lkcOzEPxukUigdqbQSMwh2lse5ybhk7DRxOuoD8Z7YnVK1LGCV-Obc79yb48Nsz3kHWfa6wDNKhXzXOOvGGcGkmHFZyqp6lh0UjJG8rOiPvUfv-9nhOF5hzIgoyYtsnyYxp-Ig-3VmYdCDWVujO7TodbA-X8Km90M8f_E1dNa1yDfoQocp1uwYrEGnkzNR6ZJGtw5S7SuMseAMoPlGt6lrYduoGNGN1Wi59fki6BbQR4AefYhciFAIWz_8RN9tWMdDMkDHaZoAJtoBWkAa7mX2vIkgeHX_PMq-nX5anpzl55ef5yfH57kpWRVyTlesog0AYSuCm1LLmuBCC24aWtJaGCl4U2JOJSNSrvgKdFlXmMoaBMVU06NsvuPWXl-pfrAbPdwqr626K_ihVXqIu3agNGWGAy4qIXAJEqQhhBJW1aKoGatYZJEda3K9vt3qrnsAFlil_NRdfirlp3b5xab3u6Z-Wm2gNuBC_CVPJnn6xdm1av2NEkySipUR8PYeMPjrCcagNnY00HXagZ-iGStKHqMnPErfPPZ6MPlzOaKA7wRm8OM4QKOMDemCJGvb_XON4q_O_6_-GxT041g
CitedBy_id crossref_primary_10_1523_ENEURO_0200_22_2022
crossref_primary_10_1088_1361_6501_ad14e2
crossref_primary_10_1109_TCDS_2023_3287184
crossref_primary_10_1016_j_compmedimag_2024_102441
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1162_netn_a_00334
Cites_doi 10.1162/neco.2006.18.7.1527
10.1109/72.761722
10.1109/tmi.2017.2715285
10.3389/neuro.11.037.2009
10.1016/j.neuroimage.2015.07.069
10.1016/s1053-8119(03)00435-x
10.1109/tcds.2019.2916916
10.1037/0033-2909.86.2.420
10.1002/hbm.20663
10.1109/TBME.2021.3102466
10.1016/j.media.2021.101974
10.1016/j.tics.2019.05.004
10.1145/1756006.1756008
10.1093/scan/nsz037
10.1109/ICNN.1995.488968
10.1126/science.1089506
10.1037/1082-989X.1.1.30v
10.1093/cercor/bhk030
10.1007/978-3-642-33275-3_2
10.1016/j.compmedimag.2020.101747
10.1371/journal.pone.0190097
10.1038/s41598-017-11324-8
10.1007/s11682-021-00469-w
10.1002/hbm.24005
10.1016/j.neuroimage.2012.03.027
10.1109/memb.2006.1607672
10.1016/j.media.2014.10.011
ContentType Journal Article
Copyright Copyright © 2021 Ren, Xu, Tao, Song and He.
Copyright © 2021 Ren, Xu, Tao, Song and He. 2021 Ren, Xu, Tao, Song and He
Copyright_xml – notice: Copyright © 2021 Ren, Xu, Tao, Song and He.
– notice: Copyright © 2021 Ren, Xu, Tao, Song and He. 2021 Ren, Xu, Tao, Song and He
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnins.2021.794955
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_a36c7e0158804e9e9c223265d81d6656
10.3389/fnins.2021.794955
PMC8692564
34955738
10_3389_fnins_2021_794955
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c465t-73b653fee26b20f4a9d201a87cf343d8c987f407396299b7bea4d5039de8303a3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:29:43 EDT 2025
Sun Oct 26 03:56:11 EDT 2025
Tue Sep 30 16:29:38 EDT 2025
Thu Oct 02 03:24:55 EDT 2025
Thu Jan 02 22:55:18 EST 2025
Wed Oct 01 02:21:39 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep belief network
functional brain network (FBN)
neural architecture search
naturalistic fMRI
hierarchical organization of brain function
Language English
License Copyright © 2021 Ren, Xu, Tao, Song and He.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-73b653fee26b20f4a9d201a87cf343d8c987f407396299b7bea4d5039de8303a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Xi Jiang, University of Electronic Science and Technology of China, China
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Qing Li, Beijing Normal University, China; Lin Zhao, University of Georgia, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.794955
PMID 34955738
PQID 2614757327
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a36c7e0158804e9e9c223265d81d6656
unpaywall_primary_10_3389_fnins_2021_794955
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8692564
proquest_miscellaneous_2614757327
pubmed_primary_34955738
crossref_citationtrail_10_3389_fnins_2021_794955
crossref_primary_10_3389_fnins_2021_794955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-08
PublicationDateYYYYMMDD 2021-12-08
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Meunier (B19) 2009; 3
Hasson (B7) 2004; 303
Real (B23) 2019
Guo (B6) 2012; 61
Hinton (B8) 2006; 18
Kennedy (B12) 1995
Zhang (B30)
Ferrarini (B3) 2009; 30
Qiang (B21)
Huang (B10) 2018; 37
Golland (B5) 2007; 17
Fischer (B4) 2012; 7441
Mairal (B17) 2010; 11
Hyvarinen (B11) 1999; 10
Calhoun (B2) 2006; 25
Vanderwal (B28) 2015; 122
Sonkusare (B27) 2019; 23
Ren (B24) 2017; 12
Qiang (B22); 83
Mcgraw (B18) 1996; 1
Beckmann (B1) 2003; 20
Zhao (B31) 2021
Zhao (B32) 2020; 12
Hu (B9) 2018; 39
Lv (B16) 2015; 20
Zhang (B29)
Li (B14); 69
Shrout (B26) 1979; 86
Ren (B25) 2017; 7
Li (B13); 15
Li (B15); 2021
Nastase (B20) 2019; 14
References_xml – volume: 18
  start-page: 1527
  year: 2006
  ident: B8
  article-title: A fast learning algorithm for deep belief nets.
  publication-title: Neural Computat.
  doi: 10.1162/neco.2006.18.7.1527
– ident: B29
  article-title: A TWO-STAGE DBN-BASED METHOD TO EXPLORING FUNCTIONAL BRAIN NETWORKS IN NATURALISTIC PARADIGM FMRI
  publication-title: 16th IEEE International Symposium on Biomedical Imaging (ISBI)
– volume: 10
  start-page: 626
  year: 1999
  ident: B11
  article-title: Fast and robust fixed-point algorithms for independent component analysis.
  publication-title: IEEE Transact. Neural Netw.
  doi: 10.1109/72.761722
– volume: 37
  start-page: 1551
  year: 2018
  ident: B10
  article-title: Modeling Task fMRI Data Via Deep Convolutional Autoencoder.
  publication-title: IEEE Transact. Med. Imaging
  doi: 10.1109/tmi.2017.2715285
– volume: 3
  year: 2009
  ident: B19
  article-title: Hierarchical modularity in human brain functional networks.
  publication-title: Front. Neuroinformat.
  doi: 10.3389/neuro.11.037.2009
– volume: 122
  start-page: 222
  year: 2015
  ident: B28
  article-title: Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.069
– ident: B30
  article-title: Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net
  publication-title: 10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 20
  start-page: 1052
  year: 2003
  ident: B1
  article-title: General multilevel linear modeling for group analysis in FMRI.
  publication-title: Neuroimage
  doi: 10.1016/s1053-8119(03)00435-x
– volume: 12
  start-page: 451
  year: 2020
  ident: B32
  article-title: Four-Dimensional Modeling of fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNNs).
  publication-title: IEEE Transact. Cognit. Dev. Syst.
  doi: 10.1109/tcds.2019.2916916
– volume: 86
  start-page: 420
  year: 1979
  ident: B26
  article-title: Intraclass correlations: uses in assessing rater reliability.
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 30
  start-page: 2220
  year: 2009
  ident: B3
  article-title: Hierarchical functional modularity in the resting-state human brain.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20663
– volume: 2021
  ident: B15
  article-title: Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition.
  publication-title: IEEE Transact. Biomedical Engine.
  doi: 10.1109/TBME.2021.3102466
– year: 2021
  ident: B31
  article-title: Exploring the Functional Difference of Gyri/Sulci via Hierarchical Interpretable Autoencoder
  publication-title: 24th International Conference on Medical Image Computing and Computer Assisted Interventio(MICCAI)
– volume: 69
  ident: B14
  article-title: Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.101974
– volume: 23
  start-page: 699
  year: 2019
  ident: B27
  article-title: Naturalistic Stimuli in Neuroscience: Critically Acclaimed.
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2019.05.004
– volume: 11
  start-page: 19
  year: 2010
  ident: B17
  article-title: Online Learning for Matrix Factorization and Sparse Coding.
  publication-title: J. Machine Learn. Res.
  doi: 10.1145/1756006.1756008
– volume: 14
  start-page: 669
  year: 2019
  ident: B20
  article-title: Measuring shared responses across subjects using intersubject correlation.
  publication-title: Soc. Cognit. Affect. Neurosci.
  doi: 10.1093/scan/nsz037
– year: 1995
  ident: B12
  article-title: Particle Swarm Optimization
  publication-title: ICNN′95 - International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– volume: 303
  start-page: 1634
  year: 2004
  ident: B7
  article-title: Intersubject synchronization of cortical activity during natural vision.
  publication-title: Science
  doi: 10.1126/science.1089506
– volume: 1
  year: 1996
  ident: B18
  article-title: Forming inferences about some intraclass correlation coefficients.
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.1.1.30v
– volume: 17
  start-page: 766
  year: 2007
  ident: B5
  article-title: Extrinsic and Intrinsic Systems in the Posterior Cortex of the Human Brain Revealed during Natural Sensory Stimulation.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhk030
– volume: 7441
  start-page: 14
  year: 2012
  ident: B4
  article-title: An Introduction to Restricted Boltzmann Machines.
  publication-title: Springer
  doi: 10.1007/978-3-642-33275-3_2
– volume: 83
  ident: B22
  article-title: Modeling task-based fMRI data via deep belief network with neural architecture search.
  publication-title: Computerized Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101747
– volume: 12
  year: 2017
  ident: B24
  article-title: Sparse coding reveals greater functional connectivity in female brains during naturalistic emotional experience.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0190097
– volume: 7
  year: 2017
  ident: B25
  article-title: Inter-subject Functional Correlation Reveal a Hierarchical Organization of Extrinsic and Intrinsic Systems in the Brain.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11324-8
– volume: 15
  start-page: 2646
  ident: B13
  article-title: Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder.
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-021-00469-w
– volume: 39
  start-page: 2368
  year: 2018
  ident: B9
  article-title: Latent source mining in FMRI via restricted Boltzmann machine.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24005
– volume: 61
  start-page: 1471
  year: 2012
  ident: B6
  article-title: One-year test-retest reliability of intrinsic connectivity network fMRI in older adults.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.027
– ident: B21
  article-title: Deep Variational Autoencoder for Modeling Functional Brain Networks and Adhd Identification
  publication-title: IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– volume: 25
  start-page: 79
  year: 2006
  ident: B2
  article-title: Unmixing fMRI with independent component analysis - Using ICA to characterize high-dimensional fMRI data in a concise manner.
  publication-title: IEEE Engine. Med. Biol. Magaz.
  doi: 10.1109/memb.2006.1607672
– year: 2019
  ident: B23
  article-title: Regularized Evolution for Image Classifier Architecture Search
  publication-title: 33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence
– volume: 20
  start-page: 112
  year: 2015
  ident: B16
  article-title: Sparse representation of whole-brain fMRI signals for identification of functional networks.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.10.011
SSID ssj0062842
Score 2.3317144
Snippet Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 794955
SubjectTerms deep belief network
functional brain network (FBN)
hierarchical organization of brain function
naturalistic fMRI
neural architecture search
Neuroscience
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmkPGQkxAEUmsSOHR9bYLUgtZduRW-R44y3kdLsCu1S9QfxP5mxd5ddgeiFax5-ZL54Ptvjbxh7o9GHNXkBqbTCpTL3WWpLD6kHmVcZiLYNOtsnp2p8Lr9elBdbqb4oJizKA8cPd2iFchrQaSHQJBgwDh1aocoWiZZCMkKjb1aZ9WQqjsEKB90i7mHiFMwc-qEbSJu7yD8g_gyd69vyQkGs_28M889AybvLYW5vrm3fb3mh0QN2f0Uf-VFs9kN2B4ZHbP9owKnz1Q1_y0NAZ1gp32c_xx2dLg7JTnp-FkKn00mUouo5JUGjo-h85vmpDeobQbOZj9DTxQVCfmKnAx1y5LTIT8ocwL9chbRG_KybkvIy_9FZPrmepUhap8A_Acz5MZYLWGgMMOffusUlJw2Q0O7f2xY8Rjo_Zuejz5OP43SVlSF1UpWLVItGlcIDFKopMi-taZFE2Eo7L6RoK2cq7SVtACp0dY1uwMq2zIRpoUJ_acUTtjfMBnjGeG5lkRkHKvdael01hRXW5c4B8si8UQnL1laq3UqynDJn9DVOXciwdTBsTYato2ET9m7zyjzqdfzr4WMy_eZBktoOFxCA9QqA9W0ATNjrNXBq_DVpv8UOMFtiTUh9dKlFoRP2NAJpU5Wg-rWoEqZ3ILbTlt07Q3cZ5L8rZZCnyoS934Dx9q4e_I-uPmf3qMgQzVO9YHuL70t4iZxs0bwKv98vAjg2pQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELage4AXBgxGxg8ZCfEASpfEjp08dkBVkFYhrRXlKXIcu4vo3Aq1TOP_4f_kzkm7FSYQ4i1NHTvWXXLf5e6-I-SFBBtWxokJuWI65LGNQpVaE1rD4ywyrKo8z_bxUAzG_MMknVyphcG0Soul-9gIunYNU3CbIoZPOHhU-aF1tUOq7STugjrlaXq4qOxNsiNSwOMdsjMefux9Rk9LYElQyiaXxzxrQpvXz7NlnDyH_3XA8_f8yVsrt1AX52o2u2Kc-rtEr7fV5KR86a6WZVd__4Xx8f_2fZfcabEr7TUX3CM3jLtP9noO_PazC_qS-mxS_5l-j_wY1Fja7DutzOiJz9sORw0P1oxiBzasg6dzS4fKU394wmjaBzPbfJ2kx2rqsMKSYoQBaUEMfX_meyrRk3qKtM_0W63o6HweAmKeGvrWmAU9gnkNTNpkt9NP9fKUIgGJv-_LmAlt0qwfkHH_3ejNIGxbQoSai3QZSlaKlFljElEmkeUqrwDBqExqyzirMp1n0nKMPgqws6UsjeJVGrG8MhkYa8Ueko6bO_OI0FjxJMq1EbGV3MqsTBRTOtbaAIiNSxGQaK0LhW750rFtx6wAvwnFUXhxFCiOohFHQF5tLlk0ZCF_GnyECrYZiDzf_gSIvmhFXygmtDQA2eA1y01ucg1wLhFpBW6GACgekOdr9SzgvYDBHuXMfAUrAe6SqWSJDMh-o66bpRiuL1kWELmlyFv3sv2Pq08993gmcgDJPCCvNyr_960e_NPox-Q2_vI5Q9kT0ll-XZmngPyW5bP20f4JBpJY9A
  priority: 102
  providerName: Unpaywall
Title Hierarchical Spatio-Temporal Modeling of Naturalistic Functional Magnetic Resonance Imaging Signals via Two-Stage Deep Belief Network With Neural Architecture Search
URI https://www.ncbi.nlm.nih.gov/pubmed/34955738
https://www.proquest.com/docview/2614757327
https://pubmed.ncbi.nlm.nih.gov/PMC8692564
https://www.frontiersin.org/articles/10.3389/fnins.2021.794955/pdf
https://doaj.org/article/a36c7e0158804e9e9c223265d81d6656
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJsFeEDA-wkdlJMQDKFsSO3bygFALmwpSq4m1YjxFjnPuImVpKS2jfxD_J2enLauoQOIpUpLaae6c-53v7neEvJBow_IwAp8rpn0emsBXsQHfAA-TAFhROJ7tXl90h_zjeXy-Q1btrZYv8NtW1872kxpOq8MfXxdvccG_sR4n2tsjU5e1Zd6OwkPUrjSOb5A9NFSp7eTQ4-uggsAvsQt-ClsohEi9CXJuH2Kf3GT26ApXrlksR-y_DY3-mVR5a15P1OJKVdU1i3Vyh9xeQk3abnTjLtmB-h45aNfoZl8u6Evqkj_drvoB-dktbSWya4xS0TOXZu0PGtqqitqGabZsnY4N7SvH1OH4nekJWsVmM5H21Ki2BZHUBgQsiwfQD5euBRI9K0f2bdPvpaKDq7GPAHcE9D3AhHZwXMBBm2R0-rmcXVDLF-Ke-3eIgzZZ0ffJ8OR48K7rLzs4-JqLeOZLlouYGYBI5FFguEoLBBwqkdowzopEp4k03AYLBZrFXOageBEHLC0gQduq2AOyW49reERoqHgUpBpEaCQ3MskjxZQOtQbEnGEuPBKspJTpJb257bJRZejmWBlnTsaZlXHWyNgjr9Y_mTTcHn-7uWNFv77R0nK7E-PpKFuu8kwxoSUgwsKvIocUUo3oKxJxgV6BQOTskecrxclwGdvYjKphPMeZECZJ1LZIeuRho0jrqVaK6BG5oWIbz7J5pS4vHFV4IlLEtNwjr9fK-O-_-vi_53lC9u04Lt0neUp2Z9M5PEPQNstbZK9z3D_91HKbHi23MPHcsH_a_vIL93RG4g
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELage4AXBgxGxg8ZCfEASpfEjp08dkBVkFYhrRXlKXIcu4vo3Aq1TOP_4f_kzkm7FSYQ4i1NHTvWXXLf5e6-I-SFBBtWxokJuWI65LGNQpVaE1rD4ywyrKo8z_bxUAzG_MMknVyphcG0Soul-9gIunYNU3CbIoZPOHhU-aF1tUOq7STugjrlaXq4qOxNsiNSwOMdsjMefux9Rk9LYElQyiaXxzxrQpvXz7NlnDyH_3XA8_f8yVsrt1AX52o2u2Kc-rtEr7fV5KR86a6WZVd__4Xx8f_2fZfcabEr7TUX3CM3jLtP9noO_PazC_qS-mxS_5l-j_wY1Fja7DutzOiJz9sORw0P1oxiBzasg6dzS4fKU394wmjaBzPbfJ2kx2rqsMKSYoQBaUEMfX_meyrRk3qKtM_0W63o6HweAmKeGvrWmAU9gnkNTNpkt9NP9fKUIgGJv-_LmAlt0qwfkHH_3ejNIGxbQoSai3QZSlaKlFljElEmkeUqrwDBqExqyzirMp1n0nKMPgqws6UsjeJVGrG8MhkYa8Ueko6bO_OI0FjxJMq1EbGV3MqsTBRTOtbaAIiNSxGQaK0LhW750rFtx6wAvwnFUXhxFCiOohFHQF5tLlk0ZCF_GnyECrYZiDzf_gSIvmhFXygmtDQA2eA1y01ucg1wLhFpBW6GACgekOdr9SzgvYDBHuXMfAUrAe6SqWSJDMh-o66bpRiuL1kWELmlyFv3sv2Pq08993gmcgDJPCCvNyr_960e_NPox-Q2_vI5Q9kT0ll-XZmngPyW5bP20f4JBpJY9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Spatio-Temporal+Modeling+of+Naturalistic+Functional+Magnetic+Resonance+Imaging+Signals+via+Two-Stage+Deep+Belief+Network+With+Neural+Architecture+Search&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ren%2C+Yudan&rft.au=Xu%2C+Shuhan&rft.au=Tao%2C+Zeyang&rft.au=Song%2C+Limei&rft.date=2021-12-08&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=15&rft_id=info:doi/10.3389%2Ffnins.2021.794955&rft_id=info%3Apmid%2F34955738&rft.externalDocID=PMC8692564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon