Fuzzy Boost Classifier of Decision Experts for Multicriteria Group Decision-Making

The expert is a vital role in multicriteria decision-making, which provides source decision opinions. In the existing group decision-making activities, the selection of experts is usually conducted artificially, which relies on personal subjective experience. It has been the urgent demand for an aut...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Zhao, Zhi-yao, Yu, Jia-bin, Bai, Yuting, Yang, Yi, Wang, Xiao-yi, Xue-bo, Jin
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1076-2787
1099-0526
1099-0526
DOI10.1155/2020/8147617

Cover

More Information
Summary:The expert is a vital role in multicriteria decision-making, which provides source decision opinions. In the existing group decision-making activities, the selection of experts is usually conducted artificially, which relies on personal subjective experience. It has been the urgent demand for an automatic selection of experts, which can help to determine their weights for the follow-up decision calculation. In this paper, an expert classification method is proposed to solve the problem. First, the CatBoost classification algorithm is improved by integrating the 2-tuple linguistic, which can effectively extract the features of samples. Second, the framework of the expert classification is designed. The flow combines the expert resume collection, expert classification, and database update. Third, a decision-making case is analyzed for the expert selection issue. The experiment and result indicate that the proposed classifier performs better than the classic methods. The proposed classification method of the decision experts can support the automatic and intelligent operation of the decision-making activities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1076-2787
1099-0526
1099-0526
DOI:10.1155/2020/8147617