Catalytic effect of dissolved humic acids on the chemical degradation of phenylurea herbicides
BACKGROUND:Although biodegradation seems to be the main cause of herbicide degradation, abiotic degradation can also be important for chemicals such as phenylureas, which are subject to catalysed soil reactions. The aim of this work is to investigate the effect of dissolved humic acids (HAs), normal...
Saved in:
Published in | Pest management science Vol. 64; no. 7; pp. 768 - 774 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2008
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1526-498X 1526-4998 |
DOI | 10.1002/ps.1556 |
Cover
Summary: | BACKGROUND:Although biodegradation seems to be the main cause of herbicide degradation, abiotic degradation can also be important for chemicals such as phenylureas, which are subject to catalysed soil reactions. The aim of this work is to investigate the effect of dissolved humic acids (HAs), normally present in natural waters, on the hydrolysis of phenylurea herbicides, and it presents a kinetic model that takes into account the role of adsorption.RESULTS:The linearity of the adsorption isotherms indicates that phenylurea-humic acid interaction can be considered in terms of a repartition-like equilibrium of phenylurea between water and HAs. Kinetic experiments show that the degradation rates of phenylureas increase with HA concentration.CONCLUSION:The kinetic equation adopted adequately describes the experimental data trend, allowing the evaluation of the catalytic effect of HAs on the chemical degradation of phenylureas. Carboxyl groups of HAs seem to play a leading role in the catalysis. The kinetic equation derived in this work could be helpful in predicting the persistence of phenylureas and of related compounds in natural water. Copyright |
---|---|
Bibliography: | http://dx.doi.org/10.1002/ps.1556 ArticleID:PS1556 istex:E0CA08EEED59498894D8E918607FAEDB946A27F3 ark:/67375/WNG-99DPQKL6-P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1526-498X 1526-4998 |
DOI: | 10.1002/ps.1556 |