Cloaking of a vertical cylinder in waves using variable bathymetry
The paper describes a process which allows a vertical circular cylinder subject to plane monochromatic surface gravity waves to appear invisible to the far-field observer. This is achieved by surrounding the cylinder with an annular region of variable bathymetry. Two approaches are taken to investig...
Saved in:
Published in | Journal of fluid mechanics Vol. 750; pp. 124 - 143 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2014.254 |
Cover
Summary: | The paper describes a process which allows a vertical circular cylinder subject to plane monochromatic surface gravity waves to appear invisible to the far-field observer. This is achieved by surrounding the cylinder with an annular region of variable bathymetry. Two approaches are taken to investigate this effect. First a mild-slope approximation is applied to the governing linearised three-dimensional water wave equations to formulate a depth-averaged two-dimensional wave equation with varying wavenumber over the variable bathmetry. This is then solved by formulating a domain integral equation, solved numerically by discretisation. For a given set of geometrical and wave parameters, the bathymetry is selected by a numerical optimisation process and it is shown that the scattering cross-section is reduced towards zero with increasing refinement of the bathymetry. A fully three-dimensional boundary-element method, based on the WAMIT solver (see www.wamit.com) but adapted here to allow for depressions in the bed, is used to assess the accuracy of the mild-slope results and then further numerically optimise the bathymetry towards a cloaking structure. Numerical results provide strong evidence that perfect cloaking is possible for the fully three-dimensional problem. One practical application of the results is that cloaking implies a reduced mean drift force on the cylinder. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2014.254 |