A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines

The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine th...

Full description

Saved in:
Bibliographic Details
Published inEngineering (Beijing, China) Vol. 3; no. 6; pp. 892 - 904
Main Authors Rostami, Jamal, Chang, Soo-Ho
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2017
Excavation Engineering and Earth Mechanics Institute, Department of Mining Engineering, Colorado School of Mines, Golden, CO 80401, USA%Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea
Elsevier
Subjects
Online AccessGet full text
ISSN2095-8099
2096-0026
DOI10.1016/j.eng.2017.12.009

Cover

More Information
Summary:The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle.
Bibliography:TBM cutterhead design;Cutterhead layout;Disk cutters;Cutting pattern;TBM efficiency
The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle.
10-1244/N
ISSN:2095-8099
2096-0026
DOI:10.1016/j.eng.2017.12.009