Correction of Recessive Dystrophic Epidermolysis Bullosa by Transposon-Mediated Integration of COL7A1 in Transplantable Patient-Derived Primary Keratinocytes

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects in type-VII collagen (C7), a protein encoded by the COL7A1 gene and essential for anchoring fibril formation at the dermal-epidermal junction. Gene therapy of RDEB is based on transplantation of autologous epidermal grafts genera...

Full description

Saved in:
Bibliographic Details
Published inJournal of investigative dermatology Vol. 137; no. 4; pp. 836 - 844
Main Authors Latella, Maria Carmela, Cocchiarella, Fabienne, De Rosa, Laura, Turchiano, Giandomenico, Gonçalves, Manuel A.F.V., Larcher, Fernando, De Luca, Michele, Recchia, Alessandra
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2017
Subjects
Online AccessGet full text
ISSN0022-202X
1523-1747
1523-1747
DOI10.1016/j.jid.2016.11.038

Cover

More Information
Summary:Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects in type-VII collagen (C7), a protein encoded by the COL7A1 gene and essential for anchoring fibril formation at the dermal-epidermal junction. Gene therapy of RDEB is based on transplantation of autologous epidermal grafts generated from gene-corrected keratinocytes sustaining C7 deposition at the dermal-epidermal junction. Transfer of the COL7A1 gene is complicated by its very large size and repetitive sequence. This article reports a gene delivery approach based on the Sleeping beauty transposon, which allows integration of a full-length COL7A1 cDNA and secretion of C7 at physiological levels in RDEB keratinocytes without rearrangements or detrimental effects on their clonogenic potential. Skin equivalents derived from gene-corrected RDEB keratinocytes were tested in a validated preclinical model of xenotransplantation on immunodeficient mice, where they showed normal deposition of C7 at the dermal-epidermal junction and restoration of skin adhesion properties. These results indicate the feasibility and efficacy of a transposon-based gene therapy approach to RDEB.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-202X
1523-1747
1523-1747
DOI:10.1016/j.jid.2016.11.038