Cutting Edge: EZH2 Promotes Osteoclastogenesis by Epigenetic Silencing of the Negative Regulator IRF8

Osteoclasts are resorptive cells that are important for homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role for epigenetic mechanisms in osteoclastogenesis. A recent study showed that epigenetic silencing of the negative regulator of osteoclasto...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 196; no. 11; pp. 4452 - 4456
Main Authors Fang, Celestia, Qiao, Yu, Mun, Se Hwan, Lee, Min Joon, Murata, Koichi, Bae, Seyeon, Zhao, Baohong, Park-Min, Kyung-Hyun, Ivashkiv, Lionel B
Format Journal Article
LanguageEnglish
Published United States 01.06.2016
Subjects
Online AccessGet full text
ISSN0022-1767
1550-6606
1550-6606
DOI10.4049/jimmunol.1501466

Cover

More Information
Summary:Osteoclasts are resorptive cells that are important for homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role for epigenetic mechanisms in osteoclastogenesis. A recent study showed that epigenetic silencing of the negative regulator of osteoclastogenesis Irf8 by DNA methylation is required for osteoclast differentiation. In this study, we investigated the role of EZH2, which epigenetically silences gene expression by histone methylation, in osteoclastogenesis. Inhibition of EZH2 by the small molecule GSK126, or decreasing its expression using antisense oligonucleotides, impeded osteoclast differentiation. Mechanistically, EZH2 was recruited to the IRF8 promoter after RANKL stimulation to deposit the negative histone mark H3K27me3 and downregulate IRF8 expression. GSK126 attenuated bone loss in the ovariectomy mouse model of postmenopausal osteoporosis. Our findings provide evidence for an additional mechanism of epigenetic IRF8 silencing during osteoclastogenesis that likely works cooperatively with DNA methylation, further emphasizing the importance of IRF8 as a negative regulator of osteoclastogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1767
1550-6606
1550-6606
DOI:10.4049/jimmunol.1501466