Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms

The accurate generation of forward models is an important element in general research in electrocardiography, and in particular for the techniques for ElectroCardioGraphic Imaging (ECGI). Recent research efforts have been devoted to the reliable and fast generation of forward models. However, these...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 9; p. 1727
Main Authors Coll-Font, Jaume, Brooks, Dana H.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 03.12.2018
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2018.01727

Cover

More Information
Summary:The accurate generation of forward models is an important element in general research in electrocardiography, and in particular for the techniques for ElectroCardioGraphic Imaging (ECGI). Recent research efforts have been devoted to the reliable and fast generation of forward models. However, these model can suffer from several sources of inaccuracy, which in turn can lead to considerable error in both the forward simulation of body surface potentials and even more so for ECGI solutions. In particular, the accurate localization of the heart within the torso is sensitive to movements due to respiration and changes in position of the subject, a problem that cannot be resolved with better imaging and segmentation alone. Here, we propose an algorithm to localize the position of the heart using electrocardiographic recordings on both the heart and torso surface over a sequence of cardiac cycles. We leverage the dependency of electrocardiographic forward models on the underlying geometry to parameterize the forward model with respect to the position (translation) and orientation of the heart, and then estimate these parameters from heart and body surface potentials in a numerical inverse problem. We show that this approach is capable of localizing the position of the heart in synthetic experiments and that it reduces the modeling error in the forward models and resulting inverse solutions in canine experiments. Our results show a consistent decrease in error of both simulated body surface potentials and inverse reconstructed heart surface potentials after re-localizing the heart based on our estimated geometric correction. These results suggest that this method is capable of improving electrocardiographic models used in research settings and suggest the basis for the extension of the model presented here to its application in a purely inverse setting, where the heart potentials are unknown.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Henggui Zhang, University of Manchester, United Kingdom; Yves Coudière, Université de Bordeaux, France
This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology
Edited by: Mark Potse, Inria Bordeaux-Sud-Ouest Research Centre, France
ISSN:1664-042X
1664-042X
DOI:10.3389/fphys.2018.01727