Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms
The accurate generation of forward models is an important element in general research in electrocardiography, and in particular for the techniques for ElectroCardioGraphic Imaging (ECGI). Recent research efforts have been devoted to the reliable and fast generation of forward models. However, these...
Saved in:
| Published in | Frontiers in physiology Vol. 9; p. 1727 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Media S.A
03.12.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-042X 1664-042X |
| DOI | 10.3389/fphys.2018.01727 |
Cover
| Summary: | The accurate generation of forward models is an important element in general research in electrocardiography, and in particular for the techniques for ElectroCardioGraphic Imaging (ECGI). Recent research efforts have been devoted to the reliable and fast generation of forward models. However, these model can suffer from several sources of inaccuracy, which in turn can lead to considerable error in both the forward simulation of body surface potentials and even more so for ECGI solutions. In particular, the accurate localization of the heart within the torso is sensitive to movements due to respiration and changes in position of the subject, a problem that cannot be resolved with better imaging and segmentation alone. Here, we propose an algorithm to localize the position of the heart using electrocardiographic recordings on both the heart and torso surface over a sequence of cardiac cycles. We leverage the dependency of electrocardiographic forward models on the underlying geometry to parameterize the forward model with respect to the position (translation) and orientation of the heart, and then estimate these parameters from heart and body surface potentials in a numerical inverse problem. We show that this approach is capable of localizing the position of the heart in synthetic experiments and that it reduces the modeling error in the forward models and resulting inverse solutions in canine experiments. Our results show a consistent decrease in error of both simulated body surface potentials and inverse reconstructed heart surface potentials after re-localizing the heart based on our estimated geometric correction. These results suggest that this method is capable of improving electrocardiographic models used in research settings and suggest the basis for the extension of the model presented here to its application in a purely inverse setting, where the heart potentials are unknown. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Henggui Zhang, University of Manchester, United Kingdom; Yves Coudière, Université de Bordeaux, France This article was submitted to Cardiac Electrophysiology, a section of the journal Frontiers in Physiology Edited by: Mark Potse, Inria Bordeaux-Sud-Ouest Research Centre, France |
| ISSN: | 1664-042X 1664-042X |
| DOI: | 10.3389/fphys.2018.01727 |