Improving Performance of Motor Imagery-based Brain-computer Interface in Poorly Performing Subjects Using a Hybrid-imagery Method utilizing Combined Motor and Somatosensory Activity

The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right ha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1
Main Authors Park, Sangin, Ha, Jihyeon, Kim, Laehyun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3237583

Cover

Abstract The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.
AbstractList The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.
The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60± 21.62%, 71.25± 19.53%, and 84.09± 12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.
The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.
Author Park, Sangin
Kim, Laehyun
Ha, Jihyeon
Author_xml – sequence: 1
  givenname: Sangin
  orcidid: 0000-0002-7254-1610
  surname: Park
  fullname: Park, Sangin
  organization: Industry-Academy Cooperation Team, Hanyang University, Seoul, South Korea
– sequence: 2
  givenname: Jihyeon
  surname: Ha
  fullname: Ha, Jihyeon
  organization: Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
– sequence: 3
  givenname: Laehyun
  orcidid: 0000-0002-5769-1039
  surname: Kim
  fullname: Kim, Laehyun
  organization: Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37021903$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAgihSGzYZDi-JHGWZVToSC1UTLu2bMcZPErs1nYqDe_F--E0Mwh1wcbX7__Psc85zY6sszrL3iJYIATNp9tv6x8XCwyYLAgmdcnIi-wElSUrACM4mtaEFpRgOM5OQ9gCoLoq61fZMakT0QA5yX6vhnvvHo3d5Dfad84Pwiqduy6_dtH5fDWIjfa7Qoqg2_yzF8YWyg33Y9Tp0qaxE4k3Nr9xzve7g8tkuB7lVqsY8rswbUV-uZPetIWZPfNrHX-6Nh-j6c2viVi6QRqb4syxhW3ztRtEdEHb4JLiXEXzaOLudfayE33Qb_bzWXb35eJ2eVlcff-6Wp5fFYpWOBYCKKWMYkZBYiRxI7tStpWqMGXppNZCQUkqUVZdUzJGoAVZYqgpgloDashZtpp9Wye2_N6nzP2OO2H404HzGy58NKrXvBMtEJ3CdBXQphVMISIUwkSKVjKBktfH2Sv998OoQ-SDCUr3vbDajYHjuqkRLaGEhH54hm7d6G16aaJqSghmhCXq_Z4a5aDbv-kdipsANgPKuxC87rgyUUTjbEx17DkCPvURf-ojPvUR3_dRkuJn0oP7f0XvZpHRWv8jAJQKUJM_46TVeQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_2147_JMDH_S509747
crossref_primary_10_3390_biomimetics10020118
crossref_primary_10_3389_fnbot_2023_1174613
crossref_primary_10_1109_ACCESS_2024_3421569
crossref_primary_10_1109_TSMC_2024_3369071
crossref_primary_10_1016_j_cmpb_2024_108332
crossref_primary_10_1016_j_eswa_2023_122286
crossref_primary_10_1109_ACCESS_2024_3459866
Cites_doi 10.1007/978-981-16-9247-5_40
10.1145/2110363.2110366
10.1109/embc.2014.6944007
10.1109/embc.2019.8857192
10.1016/j.jphys.2019.08.007
10.1371/journal.pone.0026322
10.3390/app7040347
10.3389/fnins.2018.00093
10.26599/bsa.2020.9050021
10.1145/3417519.3417556
10.1109/tnsre.2018.2792481
10.1016/s1388-2457(02)00057-3
10.1109/7333.918276
10.1111/ejn.15209
10.1088/1741-2560/7/2/026007
10.1371/journal.pone.0024860
10.1109/access.2019.2917327
10.1038/nn1873
10.1371/journal.pone.0047048
10.1109/tnsre.2018.2848883
10.1109/tbme.2018.2852755
10.1088/1741-2552/ac3044
10.1109/tnsre.2009.2039594
10.1007/s10548-018-00696-3
10.1109/tbme.2014.2345458
10.1016/j.neuroimage.2007.01.051
10.1109/tnsre.2017.2757519
10.1016/j.neuroimage.2010.03.022
10.1109/tbme.2015.2465866
10.1177/1550059414522229
10.1109/tnsre.2016.2627809
10.3389/fnins.2021.638638
10.1080/17434440.2016.1174572
10.1109/tbme.2018.2882075
10.1038/s41467-018-03989-0
10.1007/978-3-642-02091-9_4
10.1097/wnr.0b013e32832a1820
10.1109/tnsre.2017.2684084
10.1016/j.neucom.2012.04.016
10.1109/tbme.2013.2287245
10.1016/j.neubiorev.2018.08.003
10.1007/s10548-021-00840-6
10.1109/embc.2018.8512860
10.1088/1741-2560/4/2/r01
10.1109/tnsre.2016.2646763
10.1088/2057-1976/ab0cee
10.1371/journal.pone.0080886
10.1109/bci48061.2020.9061613
10.3389/fnins.2015.00527
10.3389/fnins.2021.732545
10.1053/apmr.2001.26621
10.1109/tnsre.2020.2987529
10.1109/ner.2015.7146549
10.1113/jp279966
10.1016/j.neuroimage.2005.12.003
10.1016/j.clinph.2008.08.013
10.1109/tcyb.2019.2904052
10.1109/embc46164.2021.9630102
10.1007/s11517-021-02449-0
10.1523/eneuro.0455-22.2023
10.1007/s11517-011-0858-4
10.1088/1741-2560/13/4/046003
10.3389/fnins.2012.00039
10.1016/j.brainres.2008.05.089
10.1109/tbme.2014.2320948
10.1016/j.apmr.2014.03.036
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3237583
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1
ExternalDocumentID oai_doaj_org_article_fad03eb21f6049da8c13ac123badb8a1
37021903
10_1109_TNSRE_2023_3237583
10018407
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Institute of Information & Communications Technology Planning & Evaluation
  grantid: 2017-000432
GroupedDBID ---
-~X
0R~
29I
4.4
5GY
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
F5P
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
53G
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-a0444842840b21b29bf5bd6c62480b27eac0536a56f958830d0b52074107e0193
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:17:16 EDT 2025
Fri Jul 11 01:03:56 EDT 2025
Fri Jul 25 02:52:19 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Wed Aug 27 02:21:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-a0444842840b21b29bf5bd6c62480b27eac0536a56f958830d0b52074107e0193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7254-1610
0000-0002-5769-1039
0000-0001-7671-0162
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10018407
PMID 37021903
PQID 2774332838
PQPubID 85423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2023_3237583
doaj_primary_oai_doaj_org_article_fad03eb21f6049da8c13ac123badb8a1
crossref_primary_10_1109_TNSRE_2023_3237583
proquest_miscellaneous_2797145050
ieee_primary_10018407
pubmed_primary_37021903
proquest_journals_2774332838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
Tibrewal (ref27) 2021
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Huck (ref52) 1974
Field (ref53) 2013
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref28
  doi: 10.1007/978-981-16-9247-5_40
– ident: ref55
  doi: 10.1145/2110363.2110366
– ident: ref8
  doi: 10.1109/embc.2014.6944007
– ident: ref13
  doi: 10.1109/embc.2019.8857192
– ident: ref7
  doi: 10.1016/j.jphys.2019.08.007
– ident: ref31
  doi: 10.1371/journal.pone.0026322
– ident: ref66
  doi: 10.3390/app7040347
– ident: ref23
  doi: 10.3389/fnins.2018.00093
– ident: ref19
  doi: 10.26599/bsa.2020.9050021
– ident: ref36
  doi: 10.1145/3417519.3417556
– ident: ref25
  doi: 10.1109/tnsre.2018.2792481
– ident: ref30
  doi: 10.1016/s1388-2457(02)00057-3
– ident: ref1
  doi: 10.1109/7333.918276
– volume-title: Discovering Statistics Using IBM SPSS Statistics
  year: 2013
  ident: ref53
– ident: ref65
  doi: 10.1111/ejn.15209
– ident: ref58
  doi: 10.1088/1741-2560/7/2/026007
– ident: ref64
  doi: 10.1371/journal.pone.0024860
– ident: ref18
  doi: 10.1109/access.2019.2917327
– ident: ref43
  doi: 10.1038/nn1873
– ident: ref38
  doi: 10.1371/journal.pone.0047048
– ident: ref4
  doi: 10.1109/tnsre.2018.2848883
– ident: ref67
  doi: 10.1109/tbme.2018.2852755
– ident: ref34
  doi: 10.1088/1741-2552/ac3044
– ident: ref2
  doi: 10.1109/tnsre.2009.2039594
– ident: ref41
  doi: 10.1007/s10548-018-00696-3
– ident: ref60
  doi: 10.1109/tbme.2014.2345458
– ident: ref59
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref49
  doi: 10.1109/tnsre.2017.2757519
– ident: ref39
  doi: 10.1016/j.neuroimage.2010.03.022
– ident: ref12
  doi: 10.1109/tbme.2015.2465866
– ident: ref47
  doi: 10.1177/1550059414522229
– ident: ref40
  doi: 10.1109/tnsre.2016.2627809
– ident: ref33
  doi: 10.3389/fnins.2021.638638
– ident: ref69
  doi: 10.1080/17434440.2016.1174572
– ident: ref22
  doi: 10.1109/tbme.2018.2882075
– ident: ref5
  doi: 10.1038/s41467-018-03989-0
– ident: ref54
  doi: 10.1007/978-3-642-02091-9_4
– ident: ref63
  doi: 10.1097/wnr.0b013e32832a1820
– ident: ref3
  doi: 10.1109/tnsre.2017.2684084
– year: 2021
  ident: ref27
  article-title: The promise of deep learning for BCIs: Classification of motor imagery EEG using convolutional neural network
  publication-title: bioRxiv
– ident: ref44
  doi: 10.1016/j.neucom.2012.04.016
– ident: ref32
  doi: 10.1109/tbme.2013.2287245
– ident: ref6
  doi: 10.1016/j.neubiorev.2018.08.003
– ident: ref15
  doi: 10.1007/s10548-021-00840-6
– ident: ref24
  doi: 10.1109/embc.2018.8512860
– volume-title: Reading Statistics and Research
  year: 1974
  ident: ref52
– ident: ref57
  doi: 10.1088/1741-2560/4/2/r01
– ident: ref48
  doi: 10.1109/tnsre.2016.2646763
– ident: ref51
  doi: 10.1088/2057-1976/ab0cee
– ident: ref21
  doi: 10.1371/journal.pone.0080886
– ident: ref14
  doi: 10.1109/bci48061.2020.9061613
– ident: ref46
  doi: 10.3389/fnins.2015.00527
– ident: ref9
  doi: 10.3389/fnins.2021.732545
– ident: ref20
  doi: 10.1053/apmr.2001.26621
– ident: ref16
  doi: 10.1109/tnsre.2020.2987529
– ident: ref35
  doi: 10.1109/ner.2015.7146549
– ident: ref56
  doi: 10.1113/jp279966
– ident: ref61
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: ref62
  doi: 10.1016/j.clinph.2008.08.013
– ident: ref50
  doi: 10.1109/tcyb.2019.2904052
– ident: ref37
  doi: 10.1109/embc46164.2021.9630102
– ident: ref17
  doi: 10.1007/s11517-021-02449-0
– ident: ref68
  doi: 10.1523/eneuro.0455-22.2023
– ident: ref11
  doi: 10.1007/s11517-011-0858-4
– ident: ref26
  doi: 10.1088/1741-2560/13/4/046003
– ident: ref42
  doi: 10.3389/fnins.2012.00039
– ident: ref45
  doi: 10.1016/j.brainres.2008.05.089
– ident: ref29
  doi: 10.1109/tbme.2014.2320948
– ident: ref10
  doi: 10.1016/j.apmr.2014.03.036
SSID ssj0017657
Score 2.4648626
Snippet The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology....
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">BCI inefficient
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Brain-computer interface
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">motor imagery
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">motor imagery training
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">somatosensory stimuli
Accuracy
Algorithms
BCI inefficient
Brain
brain-computer interface
Brain-computer interfaces
Computer applications
Electroencephalography
Filter banks
Group dynamics
Human-computer interface
Imagery
Implants
Mental task performance
motor imagery
motor imagery training
Motor task performance
Paradigms
Performance evaluation
Protocols
Somatosensory
Somatosensory stimuli
Stimuli
Synchronization
Task analysis
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXFBax3bs-NhFrRakrap2V-ot8iOWkNoEdbeH5X_x_5hxHmwPwIVrMh5bnrH9jR_fEPLemMCMM03Opbc5rMcmd14LJIIsIq9KJzW-Rl6cqflKfr0qr3ZSfeGdsJ4euO-4o2gDExD-FVEBmA228oWwHuZbZ4OrbAp8mGFjMDWcH2iVOD5hOEtoAGfjcxlmjpZnlxcnh5g1_FBwAXBZ3FuSEnP_kGrlz6gzrT6nj8mjATbS4765T8iDpn1KPuxSBNNlzw9AP9KLe-zbz8jPaeeAnv9-J0C7SBcdhNz0yw0SWWzzGaxogc4waUQ-ZnugacswWpD_1tLzrru93o5aUCFMPLiTs6bp7gG1dL7FN2D5oJMuUoZqutpAe36gBCiGYBzq6eu2baCXHcDmbg0BdQcljn2f0GKfrE5Plp_n-ZCuIfdS8U1ukXqugnBGMjCX48bF0gXlFZcVfNEwxcOIV7ZU0ZRVJVhgruQIaZhuAGmK52Sv7drmJaGKx6aKSnDjmWwMtw1rQgC9Nkodtc9IMVqs9kNvYkqN6zrFNMzUyco1WrkerJyRT1OZ7z2Tx1-lZ-gIkySycKcP4Jv14Jv1v3wzI_voRjvVMQyodUYORr-qhyljXXMA4kIA2qsy8m76DYMdT3Bs23R3KGN0IQG0soy86P1xUi40wDXDxKv_0fLX5CH2Rr_XdED2Nrd3zRtAXxv3Ng20X_rMK-0
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving Performance of Motor Imagery-based Brain-computer Interface in Poorly Performing Subjects Using a Hybrid-imagery Method utilizing Combined Motor and Somatosensory Activity
URI https://ieeexplore.ieee.org/document/10018407
https://www.ncbi.nlm.nih.gov/pubmed/37021903
https://www.proquest.com/docview/2774332838
https://www.proquest.com/docview/2797145050
https://doaj.org/article/fad03eb21f6049da8c13ac123badb8a1
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoT1x4FlgolZGAC9rUa-_Lxxa1CkiJqjaVelv5KUUNu6hJDun_4v8xY2-WFqmIW7Tx2nH0efzN2PMNIR-ltExq6VKeG5XCfixTbSqBQpCZ53Wh8wqzkSfTcnyZf78qrvpk9ZAL45wLl8_cCD-Gs3zbmTWGyg5RLwgckmqH7ADOYrLWcGRQlUHWE1ZwDmNyts2QYfJwNr04PxlhofCR4AIYsri3CwWx_r66ysNEM2w4p0_JdPtT4z2T69F6pUfm9i8Vx_-eyzPypKee9Chi5Tl55NoX5NNdmWE6ixoD9DM9v6fg_ZL8GqIP9OxPrgHtPJ104LbTbz9QDGOT4q5o6TEWnkhNXzGChrCjV9B-3tKzrrtZbLa9YIdgvDAatKTh_gJVdLzBPLJ0Hvukk1DlmsISWcxvsQUYMXDoYZw4tmotveiAendLcMo7eOPIxKIYe-Ty9GT2dZz2JR9Sk5d8lSqUr6vBJcqZ5pnmUvtC29KUPK_hSQXbBFiNUhWll0VdC2aZLjjSIlY5YKviFdltu9a9IbTk3tW-FFwaljvJlWPOWuhX-bzylUlItoVAY_p_E8tyLJrgFzHZBNg0CJumh01Cvgzv_IxqIP9sfYzIGlqiknd4AEBoesPQeGWZcDBZX4KzZlVtMqEM8AmtrK5VlpA9BM-d4SJuErK_BWrTm51lw4HMCwGMsU7Ih-FrMBh4CqRa162xjayyHIgvS8jrCPChc1EB5ZNMvH1g0HfkMU4whqD2ye7qZu3eAylb6YMQzDgIS_I3lS81-w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELWgHODCZ4GFAkYCLmi3Xnu_fGxRqxSaqGpTqbeV7bWliLCLmuSQ_i_-HzP2ZmmRirhFm1k7jp7Hb2zPG0I-SNkwqaWNeWZUDOuxjLUpBQpBpo5Xuc5KzEYeT4rRefb1Ir_ok9V9Loy11l8-swl-9Gf5TWdWuFW2i3pBEJCUd8m9HMKKKqRrDYcGZeGFPWEOZ9ArZ5scGSZ3p5Oz04MES4UnggvgyOLGOuTl-vv6KrdTTb_kHD4ik82PDTdNvierpU7M1V86jv89msfkYU8-6V5AyxNyx7ZPycfrQsN0GlQG6Cd6ekPD-xn5New_0JM_2Qa0c3TcQeBOj36gHMY6xnWxoftYeiI2fc0I6jcenQL7WUtPuu5yvt60gg2C-8L9oAX1NxiooqM1ZpLFs9AmHfs61xQmyXx2hRbgxiCkh35C36pt6FkH5LtbQFjewRt7JpTF2CbnhwfTL6O4L_oQm6zgy1ihgF0FQVHGNE81l9rluilMwbMKnpSwUIDfKFReOJlXlWAN0zlHYsRKC3xVPCdbbdfal4QW3NnKFYJLwzIrubLMNg20q1xWutJEJN1AoDb9v4mFOea1j4yYrD1saoRN3cMmIp-Hd34GPZB_Wu8jsgZL1PL2DwAIde8aaqcaJiwM1hUQrjWqMqlQBhiFVo2uVBqRbQTPte4CbiKyswFq3TueRc2BzgsBnLGKyPvha3AZeA6kWtut0EaWaQbUl0XkRQD40LgogfRJJl7d0uk7cn80HR_Xx0eTb6_JAxxs2JDaIVvLy5V9AxRtqd_6ifkbqD84WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Performance+of+Motor+Imagery-based+Brain-computer+Interface+in+Poorly+Performing+Subjects+Using+a+Hybrid-imagery+Method+utilizing+Combined+Motor+and+Somatosensory+Activity&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Park%2C+Sangin&rft.au=Ha%2C+Jihyeon&rft.au=Kim%2C+Laehyun&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTNSRE.2023.3237583&rft.externalDocID=10018407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon