Improving Performance of Motor Imagery-based Brain-computer Interface in Poorly Performing Subjects Using a Hybrid-imagery Method utilizing Combined Motor and Somatosensory Activity
The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right ha...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2023.3237583 |
Cover
Abstract | The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface. |
---|---|
AbstractList | The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface. The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60± 21.62%, 71.25± 19.53%, and 84.09± 12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface. The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface. |
Author | Park, Sangin Kim, Laehyun Ha, Jihyeon |
Author_xml | – sequence: 1 givenname: Sangin orcidid: 0000-0002-7254-1610 surname: Park fullname: Park, Sangin organization: Industry-Academy Cooperation Team, Hanyang University, Seoul, South Korea – sequence: 2 givenname: Jihyeon surname: Ha fullname: Ha, Jihyeon organization: Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea – sequence: 3 givenname: Laehyun orcidid: 0000-0002-5769-1039 surname: Kim fullname: Kim, Laehyun organization: Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37021903$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNURC_wAgihSGzYZDi-JHGWZVToSC1UTLu2bMcZPErs1nYqDe_F--E0Mwh1wcbX7__Psc85zY6sszrL3iJYIATNp9tv6x8XCwyYLAgmdcnIi-wElSUrACM4mtaEFpRgOM5OQ9gCoLoq61fZMakT0QA5yX6vhnvvHo3d5Dfad84Pwiqduy6_dtH5fDWIjfa7Qoqg2_yzF8YWyg33Y9Tp0qaxE4k3Nr9xzve7g8tkuB7lVqsY8rswbUV-uZPetIWZPfNrHX-6Nh-j6c2viVi6QRqb4syxhW3ztRtEdEHb4JLiXEXzaOLudfayE33Qb_bzWXb35eJ2eVlcff-6Wp5fFYpWOBYCKKWMYkZBYiRxI7tStpWqMGXppNZCQUkqUVZdUzJGoAVZYqgpgloDashZtpp9Wye2_N6nzP2OO2H404HzGy58NKrXvBMtEJ3CdBXQphVMISIUwkSKVjKBktfH2Sv998OoQ-SDCUr3vbDajYHjuqkRLaGEhH54hm7d6G16aaJqSghmhCXq_Z4a5aDbv-kdipsANgPKuxC87rgyUUTjbEx17DkCPvURf-ojPvUR3_dRkuJn0oP7f0XvZpHRWv8jAJQKUJM_46TVeQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_2147_JMDH_S509747 crossref_primary_10_3390_biomimetics10020118 crossref_primary_10_3389_fnbot_2023_1174613 crossref_primary_10_1109_ACCESS_2024_3421569 crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_1016_j_cmpb_2024_108332 crossref_primary_10_1016_j_eswa_2023_122286 crossref_primary_10_1109_ACCESS_2024_3459866 |
Cites_doi | 10.1007/978-981-16-9247-5_40 10.1145/2110363.2110366 10.1109/embc.2014.6944007 10.1109/embc.2019.8857192 10.1016/j.jphys.2019.08.007 10.1371/journal.pone.0026322 10.3390/app7040347 10.3389/fnins.2018.00093 10.26599/bsa.2020.9050021 10.1145/3417519.3417556 10.1109/tnsre.2018.2792481 10.1016/s1388-2457(02)00057-3 10.1109/7333.918276 10.1111/ejn.15209 10.1088/1741-2560/7/2/026007 10.1371/journal.pone.0024860 10.1109/access.2019.2917327 10.1038/nn1873 10.1371/journal.pone.0047048 10.1109/tnsre.2018.2848883 10.1109/tbme.2018.2852755 10.1088/1741-2552/ac3044 10.1109/tnsre.2009.2039594 10.1007/s10548-018-00696-3 10.1109/tbme.2014.2345458 10.1016/j.neuroimage.2007.01.051 10.1109/tnsre.2017.2757519 10.1016/j.neuroimage.2010.03.022 10.1109/tbme.2015.2465866 10.1177/1550059414522229 10.1109/tnsre.2016.2627809 10.3389/fnins.2021.638638 10.1080/17434440.2016.1174572 10.1109/tbme.2018.2882075 10.1038/s41467-018-03989-0 10.1007/978-3-642-02091-9_4 10.1097/wnr.0b013e32832a1820 10.1109/tnsre.2017.2684084 10.1016/j.neucom.2012.04.016 10.1109/tbme.2013.2287245 10.1016/j.neubiorev.2018.08.003 10.1007/s10548-021-00840-6 10.1109/embc.2018.8512860 10.1088/1741-2560/4/2/r01 10.1109/tnsre.2016.2646763 10.1088/2057-1976/ab0cee 10.1371/journal.pone.0080886 10.1109/bci48061.2020.9061613 10.3389/fnins.2015.00527 10.3389/fnins.2021.732545 10.1053/apmr.2001.26621 10.1109/tnsre.2020.2987529 10.1109/ner.2015.7146549 10.1113/jp279966 10.1016/j.neuroimage.2005.12.003 10.1016/j.clinph.2008.08.013 10.1109/tcyb.2019.2904052 10.1109/embc46164.2021.9630102 10.1007/s11517-021-02449-0 10.1523/eneuro.0455-22.2023 10.1007/s11517-011-0858-4 10.1088/1741-2560/13/4/046003 10.3389/fnins.2012.00039 10.1016/j.brainres.2008.05.089 10.1109/tbme.2014.2320948 10.1016/j.apmr.2014.03.036 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2023.3237583 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_fad03eb21f6049da8c13ac123badb8a1 37021903 10_1109_TNSRE_2023_3237583 10018407 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Institute of Information & Communications Technology Planning & Evaluation grantid: 2017-000432 |
GroupedDBID | --- -~X 0R~ 29I 4.4 5GY 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS ESBDL F5P GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS 53G 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-a0444842840b21b29bf5bd6c62480b27eac0536a56f958830d0b52074107e0193 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:17:16 EDT 2025 Fri Jul 11 01:03:56 EDT 2025 Fri Jul 25 02:52:19 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Tue Jul 01 00:43:26 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Wed Aug 27 02:21:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-a0444842840b21b29bf5bd6c62480b27eac0536a56f958830d0b52074107e0193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7254-1610 0000-0002-5769-1039 0000-0001-7671-0162 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10018407 |
PMID | 37021903 |
PQID | 2774332838 |
PQPubID | 85423 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2023_3237583 doaj_primary_oai_doaj_org_article_fad03eb21f6049da8c13ac123badb8a1 crossref_primary_10_1109_TNSRE_2023_3237583 proquest_miscellaneous_2797145050 ieee_primary_10018407 pubmed_primary_37021903 proquest_journals_2774332838 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 Tibrewal (ref27) 2021 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Huck (ref52) 1974 Field (ref53) 2013 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref28 doi: 10.1007/978-981-16-9247-5_40 – ident: ref55 doi: 10.1145/2110363.2110366 – ident: ref8 doi: 10.1109/embc.2014.6944007 – ident: ref13 doi: 10.1109/embc.2019.8857192 – ident: ref7 doi: 10.1016/j.jphys.2019.08.007 – ident: ref31 doi: 10.1371/journal.pone.0026322 – ident: ref66 doi: 10.3390/app7040347 – ident: ref23 doi: 10.3389/fnins.2018.00093 – ident: ref19 doi: 10.26599/bsa.2020.9050021 – ident: ref36 doi: 10.1145/3417519.3417556 – ident: ref25 doi: 10.1109/tnsre.2018.2792481 – ident: ref30 doi: 10.1016/s1388-2457(02)00057-3 – ident: ref1 doi: 10.1109/7333.918276 – volume-title: Discovering Statistics Using IBM SPSS Statistics year: 2013 ident: ref53 – ident: ref65 doi: 10.1111/ejn.15209 – ident: ref58 doi: 10.1088/1741-2560/7/2/026007 – ident: ref64 doi: 10.1371/journal.pone.0024860 – ident: ref18 doi: 10.1109/access.2019.2917327 – ident: ref43 doi: 10.1038/nn1873 – ident: ref38 doi: 10.1371/journal.pone.0047048 – ident: ref4 doi: 10.1109/tnsre.2018.2848883 – ident: ref67 doi: 10.1109/tbme.2018.2852755 – ident: ref34 doi: 10.1088/1741-2552/ac3044 – ident: ref2 doi: 10.1109/tnsre.2009.2039594 – ident: ref41 doi: 10.1007/s10548-018-00696-3 – ident: ref60 doi: 10.1109/tbme.2014.2345458 – ident: ref59 doi: 10.1016/j.neuroimage.2007.01.051 – ident: ref49 doi: 10.1109/tnsre.2017.2757519 – ident: ref39 doi: 10.1016/j.neuroimage.2010.03.022 – ident: ref12 doi: 10.1109/tbme.2015.2465866 – ident: ref47 doi: 10.1177/1550059414522229 – ident: ref40 doi: 10.1109/tnsre.2016.2627809 – ident: ref33 doi: 10.3389/fnins.2021.638638 – ident: ref69 doi: 10.1080/17434440.2016.1174572 – ident: ref22 doi: 10.1109/tbme.2018.2882075 – ident: ref5 doi: 10.1038/s41467-018-03989-0 – ident: ref54 doi: 10.1007/978-3-642-02091-9_4 – ident: ref63 doi: 10.1097/wnr.0b013e32832a1820 – ident: ref3 doi: 10.1109/tnsre.2017.2684084 – year: 2021 ident: ref27 article-title: The promise of deep learning for BCIs: Classification of motor imagery EEG using convolutional neural network publication-title: bioRxiv – ident: ref44 doi: 10.1016/j.neucom.2012.04.016 – ident: ref32 doi: 10.1109/tbme.2013.2287245 – ident: ref6 doi: 10.1016/j.neubiorev.2018.08.003 – ident: ref15 doi: 10.1007/s10548-021-00840-6 – ident: ref24 doi: 10.1109/embc.2018.8512860 – volume-title: Reading Statistics and Research year: 1974 ident: ref52 – ident: ref57 doi: 10.1088/1741-2560/4/2/r01 – ident: ref48 doi: 10.1109/tnsre.2016.2646763 – ident: ref51 doi: 10.1088/2057-1976/ab0cee – ident: ref21 doi: 10.1371/journal.pone.0080886 – ident: ref14 doi: 10.1109/bci48061.2020.9061613 – ident: ref46 doi: 10.3389/fnins.2015.00527 – ident: ref9 doi: 10.3389/fnins.2021.732545 – ident: ref20 doi: 10.1053/apmr.2001.26621 – ident: ref16 doi: 10.1109/tnsre.2020.2987529 – ident: ref35 doi: 10.1109/ner.2015.7146549 – ident: ref56 doi: 10.1113/jp279966 – ident: ref61 doi: 10.1016/j.neuroimage.2005.12.003 – ident: ref62 doi: 10.1016/j.clinph.2008.08.013 – ident: ref50 doi: 10.1109/tcyb.2019.2904052 – ident: ref37 doi: 10.1109/embc46164.2021.9630102 – ident: ref17 doi: 10.1007/s11517-021-02449-0 – ident: ref68 doi: 10.1523/eneuro.0455-22.2023 – ident: ref11 doi: 10.1007/s11517-011-0858-4 – ident: ref26 doi: 10.1088/1741-2560/13/4/046003 – ident: ref42 doi: 10.3389/fnins.2012.00039 – ident: ref45 doi: 10.1016/j.brainres.2008.05.089 – ident: ref29 doi: 10.1109/tbme.2014.2320948 – ident: ref10 doi: 10.1016/j.apmr.2014.03.036 |
SSID | ssj0017657 |
Score | 2.4648626 |
Snippet | The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology.... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">BCI inefficient <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Brain-computer interface <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">motor imagery <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">motor imagery training <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">somatosensory stimuli Accuracy Algorithms BCI inefficient Brain brain-computer interface Brain-computer interfaces Computer applications Electroencephalography Filter banks Group dynamics Human-computer interface Imagery Implants Mental task performance motor imagery motor imagery training Motor task performance Paradigms Performance evaluation Protocols Somatosensory Somatosensory stimuli Stimuli Synchronization Task analysis Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXFBax3bs-NhFrRakrap2V-ot8iOWkNoEdbeH5X_x_5hxHmwPwIVrMh5bnrH9jR_fEPLemMCMM03Opbc5rMcmd14LJIIsIq9KJzW-Rl6cqflKfr0qr3ZSfeGdsJ4euO-4o2gDExD-FVEBmA228oWwHuZbZ4OrbAp8mGFjMDWcH2iVOD5hOEtoAGfjcxlmjpZnlxcnh5g1_FBwAXBZ3FuSEnP_kGrlz6gzrT6nj8mjATbS4765T8iDpn1KPuxSBNNlzw9AP9KLe-zbz8jPaeeAnv9-J0C7SBcdhNz0yw0SWWzzGaxogc4waUQ-ZnugacswWpD_1tLzrru93o5aUCFMPLiTs6bp7gG1dL7FN2D5oJMuUoZqutpAe36gBCiGYBzq6eu2baCXHcDmbg0BdQcljn2f0GKfrE5Plp_n-ZCuIfdS8U1ukXqugnBGMjCX48bF0gXlFZcVfNEwxcOIV7ZU0ZRVJVhgruQIaZhuAGmK52Sv7drmJaGKx6aKSnDjmWwMtw1rQgC9Nkodtc9IMVqs9kNvYkqN6zrFNMzUyco1WrkerJyRT1OZ7z2Tx1-lZ-gIkySycKcP4Jv14Jv1v3wzI_voRjvVMQyodUYORr-qhyljXXMA4kIA2qsy8m76DYMdT3Bs23R3KGN0IQG0soy86P1xUi40wDXDxKv_0fLX5CH2Rr_XdED2Nrd3zRtAXxv3Ng20X_rMK-0 priority: 102 providerName: Directory of Open Access Journals |
Title | Improving Performance of Motor Imagery-based Brain-computer Interface in Poorly Performing Subjects Using a Hybrid-imagery Method utilizing Combined Motor and Somatosensory Activity |
URI | https://ieeexplore.ieee.org/document/10018407 https://www.ncbi.nlm.nih.gov/pubmed/37021903 https://www.proquest.com/docview/2774332838 https://www.proquest.com/docview/2797145050 https://doaj.org/article/fad03eb21f6049da8c13ac123badb8a1 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoT1x4FlgolZGAC9rUa-_Lxxa1CkiJqjaVelv5KUUNu6hJDun_4v8xY2-WFqmIW7Tx2nH0efzN2PMNIR-ltExq6VKeG5XCfixTbSqBQpCZ53Wh8wqzkSfTcnyZf78qrvpk9ZAL45wLl8_cCD-Gs3zbmTWGyg5RLwgckmqH7ADOYrLWcGRQlUHWE1ZwDmNyts2QYfJwNr04PxlhofCR4AIYsri3CwWx_r66ysNEM2w4p0_JdPtT4z2T69F6pUfm9i8Vx_-eyzPypKee9Chi5Tl55NoX5NNdmWE6ixoD9DM9v6fg_ZL8GqIP9OxPrgHtPJ104LbTbz9QDGOT4q5o6TEWnkhNXzGChrCjV9B-3tKzrrtZbLa9YIdgvDAatKTh_gJVdLzBPLJ0Hvukk1DlmsISWcxvsQUYMXDoYZw4tmotveiAendLcMo7eOPIxKIYe-Ty9GT2dZz2JR9Sk5d8lSqUr6vBJcqZ5pnmUvtC29KUPK_hSQXbBFiNUhWll0VdC2aZLjjSIlY5YKviFdltu9a9IbTk3tW-FFwaljvJlWPOWuhX-bzylUlItoVAY_p_E8tyLJrgFzHZBNg0CJumh01Cvgzv_IxqIP9sfYzIGlqiknd4AEBoesPQeGWZcDBZX4KzZlVtMqEM8AmtrK5VlpA9BM-d4SJuErK_BWrTm51lw4HMCwGMsU7Ih-FrMBh4CqRa162xjayyHIgvS8jrCPChc1EB5ZNMvH1g0HfkMU4whqD2ye7qZu3eAylb6YMQzDgIS_I3lS81-w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELWgHODCZ4GFAkYCLmi3Xnu_fGxRqxSaqGpTqbeV7bWliLCLmuSQ_i_-HzP2ZmmRirhFm1k7jp7Hb2zPG0I-SNkwqaWNeWZUDOuxjLUpBQpBpo5Xuc5KzEYeT4rRefb1Ir_ok9V9Loy11l8-swl-9Gf5TWdWuFW2i3pBEJCUd8m9HMKKKqRrDYcGZeGFPWEOZ9ArZ5scGSZ3p5Oz04MES4UnggvgyOLGOuTl-vv6KrdTTb_kHD4ik82PDTdNvierpU7M1V86jv89msfkYU8-6V5AyxNyx7ZPycfrQsN0GlQG6Cd6ekPD-xn5New_0JM_2Qa0c3TcQeBOj36gHMY6xnWxoftYeiI2fc0I6jcenQL7WUtPuu5yvt60gg2C-8L9oAX1NxiooqM1ZpLFs9AmHfs61xQmyXx2hRbgxiCkh35C36pt6FkH5LtbQFjewRt7JpTF2CbnhwfTL6O4L_oQm6zgy1ihgF0FQVHGNE81l9rluilMwbMKnpSwUIDfKFReOJlXlWAN0zlHYsRKC3xVPCdbbdfal4QW3NnKFYJLwzIrubLMNg20q1xWutJEJN1AoDb9v4mFOea1j4yYrD1saoRN3cMmIp-Hd34GPZB_Wu8jsgZL1PL2DwAIde8aaqcaJiwM1hUQrjWqMqlQBhiFVo2uVBqRbQTPte4CbiKyswFq3TueRc2BzgsBnLGKyPvha3AZeA6kWtut0EaWaQbUl0XkRQD40LgogfRJJl7d0uk7cn80HR_Xx0eTb6_JAxxs2JDaIVvLy5V9AxRtqd_6ifkbqD84WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Performance+of+Motor+Imagery-based+Brain-computer+Interface+in+Poorly+Performing+Subjects+Using+a+Hybrid-imagery+Method+utilizing+Combined+Motor+and+Somatosensory+Activity&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Park%2C+Sangin&rft.au=Ha%2C+Jihyeon&rft.au=Kim%2C+Laehyun&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTNSRE.2023.3237583&rft.externalDocID=10018407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |