Improving Performance of Motor Imagery-based Brain-computer Interface in Poorly Performing Subjects Using a Hybrid-imagery Method utilizing Combined Motor and Somatosensory Activity

The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right ha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1
Main Authors Park, Sangin, Ha, Jihyeon, Kim, Laehyun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3237583

Cover

More Information
Summary:The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2023.3237583