Improving Performance of Motor Imagery-based Brain-computer Interface in Poorly Performing Subjects Using a Hybrid-imagery Method utilizing Combined Motor and Somatosensory Activity
The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right ha...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2023.3237583 |
Cover
Summary: | The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2023.3237583 |