Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local

Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate syntha...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 9; p. 1305
Main Authors Pauza, C. David, Liou, Mei-Ling, Lahusen, Tyler, Xiao, Lingzhi, Lapidus, Rena G., Cairo, Cristiana, Li, Haishan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 08.06.2018
Subjects
Online AccessGet full text
ISSN1664-3224
1664-3224
DOI10.3389/fimmu.2018.01305

Cover

More Information
Summary:Human gamma delta T cells have extraordinary properties including the capacity for tumor cell killing. The major gamma delta T cell subset in human beings is designated Vγ9Vδ2 and is activated by intermediates of isoprenoid biosynthesis or aminobisphosphonate inhibitors of farnesyldiphosphate synthase. Activated cells are potent for killing a broad range of tumor cells and demonstrated the capacity for tumor reduction in murine xenotransplant tumor models. Translating these findings to the clinic produced promising initial results but greater potency is needed. Here, we review the literature on gamma delta T cells in cancer therapy with emphasis on the Vγ9Vδ2 T cell subset. Our goal was to examine obstacles preventing effective Vγ9Vδ2 T cell therapy and strategies for overcoming them. We focus on the potential for local activation of Vγ9Vδ2 T cells within the tumor environment to increase potency and achieve objective responses during cancer therapy. The gamma delta T cells and especially the Vγ9Vδ2 T cell subset, have the potential to overcome many problems in cancer therapy especially for tumors with no known treatment, lacking tumor-specific antigens for targeting by antibodies and CAR-T, or unresponsive to immune checkpoint inhibitors. Translation of amazing work from many laboratories studying gamma delta T cells is needed to fulfill the promise of effective and safe cancer immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Kenth Gustafsson, University College London, United Kingdom
Specialty section: This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology
Reviewed by: Wendy L. Havran, The Scripps Research Institute, United States; Karin Schilbach, Universität Tübingen, Germany
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2018.01305