Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-based BCIs

Steady-state visual evoked potential (SSVEP) is one of the most popular brain-computer interface (BCI) paradigms, with high information transmission rate and signal-to-noise ratio. Many calibration-free and calibration-based approaches have been proposed to improve the performance of SSVEP-based BCI...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1
Main Authors Bian, Rui, Wu, Huanyu, Liu, Bin, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2022.3225878

Cover

More Information
Summary:Steady-state visual evoked potential (SSVEP) is one of the most popular brain-computer interface (BCI) paradigms, with high information transmission rate and signal-to-noise ratio. Many calibration-free and calibration-based approaches have been proposed to improve the performance of SSVEP-based BCIs. This paper considers a quick calibration scenario, where there are plenty of data from multiple source subjects, but only a small number of calibration trials from a subset of stimulus frequencies for the new subject. We propose small data least-squares transformation (sd-LST) to solve this problem. Experiments on three publicly available SSVEP datasets demonstrated that sd-LST outperformed several classical or state-of-the-art approaches, with only about 10 calibration trials for 40-target SSVEP-based BCI spellers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2022.3225878