Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-based BCIs
Steady-state visual evoked potential (SSVEP) is one of the most popular brain-computer interface (BCI) paradigms, with high information transmission rate and signal-to-noise ratio. Many calibration-free and calibration-based approaches have been proposed to improve the performance of SSVEP-based BCI...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2022.3225878 |
Cover
Summary: | Steady-state visual evoked potential (SSVEP) is one of the most popular brain-computer interface (BCI) paradigms, with high information transmission rate and signal-to-noise ratio. Many calibration-free and calibration-based approaches have been proposed to improve the performance of SSVEP-based BCIs. This paper considers a quick calibration scenario, where there are plenty of data from multiple source subjects, but only a small number of calibration trials from a subset of stimulus frequencies for the new subject. We propose small data least-squares transformation (sd-LST) to solve this problem. Experiments on three publicly available SSVEP datasets demonstrated that sd-LST outperformed several classical or state-of-the-art approaches, with only about 10 calibration trials for 40-target SSVEP-based BCI spellers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2022.3225878 |