Wireless Communication Between Paired Leadless Pacemakers for Dual-Chamber Synchrony
Leadless pacemakers (LPs) can mitigate conventional pacemaker complications related to the transvenous leads and subcutaneous pocket surrounding the pulse generator. Although single-chamber leadless pacing has been established, multichamber pacing requires wireless bidirectional communication across...
Saved in:
Published in | Circulation. Arrhythmia and electrophysiology Vol. 15; no. 7; p. e010909 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ovid Technologies (Wolters Kluwer Health)
01.07.2022
Lippincott Williams & Wilkins |
Subjects | |
Online Access | Get full text |
ISSN | 1941-3149 1941-3084 1941-3084 |
DOI | 10.1161/circep.122.010909 |
Cover
Summary: | Leadless pacemakers (LPs) can mitigate conventional pacemaker complications related to the transvenous leads and subcutaneous pocket surrounding the pulse generator. Although single-chamber leadless pacing has been established, multichamber pacing requires wireless bidirectional communication across multiple LPs to maintain synchrony. This preclinical study demonstrates the chronic performance of implant-to-implant (i2i) communication that achieves synchronous, dual-chamber pacing with 2 LPs.BACKGROUNDLeadless pacemakers (LPs) can mitigate conventional pacemaker complications related to the transvenous leads and subcutaneous pocket surrounding the pulse generator. Although single-chamber leadless pacing has been established, multichamber pacing requires wireless bidirectional communication across multiple LPs to maintain synchrony. This preclinical study demonstrates the chronic performance of implant-to-implant (i2i) communication that achieves synchronous, dual-chamber pacing with 2 LPs.The i2i communication modality employs subthreshold electrical signals conducted between implanted LPs through the blood and myocardial tissue on a beat-by-beat basis. Right atrial and right ventricular LPs were implanted in 9 ovine subjects. The i2i transmission performance was evaluated 13 weeks after implant.METHODSThe i2i communication modality employs subthreshold electrical signals conducted between implanted LPs through the blood and myocardial tissue on a beat-by-beat basis. Right atrial and right ventricular LPs were implanted in 9 ovine subjects. The i2i transmission performance was evaluated 13 weeks after implant.Right atrial and right ventricular LPs were implanted successfully and without complication in 9 ovine subjects. A total of 8715±457 right atrial-to-right ventricular and right ventricular-to-right atrial transmissions were sent per hour, with a success rate of 99.2±0.9%. Of periods with i2i communication failure when DDD pacing was not possible, 97.3±1.8% were resolved within 6 s.RESULTSRight atrial and right ventricular LPs were implanted successfully and without complication in 9 ovine subjects. A total of 8715±457 right atrial-to-right ventricular and right ventricular-to-right atrial transmissions were sent per hour, with a success rate of 99.2±0.9%. Of periods with i2i communication failure when DDD pacing was not possible, 97.3±1.8% were resolved within 6 s.For the first time, synchronized, dual-chamber pacing has been demonstrated in a chronic preclinical feasibility study by 2 leadless pacemakers using beat-to-beat, wireless communication, achieving a success rate of 99.2%.CONCLUSIONSFor the first time, synchronized, dual-chamber pacing has been demonstrated in a chronic preclinical feasibility study by 2 leadless pacemakers using beat-to-beat, wireless communication, achieving a success rate of 99.2%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1941-3149 1941-3084 1941-3084 |
DOI: | 10.1161/circep.122.010909 |