Linear stability of finite-amplitude capillary waves on water of infinite depth

We study the linear stability of the exact deep-water capillary wave solution of Crapper (J. Fluid Mech., vol. 2, 1957, pp. 532–540) subject to two-dimensional perturbations (both subharmonic and superharmonic). By linearizing a set of exact one-dimensional non-local evolution equations, a stability...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 696; pp. 402 - 422
Main Authors Tiron, Roxana, Choi, Wooyoung
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.04.2012
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2012.56

Cover

More Information
Summary:We study the linear stability of the exact deep-water capillary wave solution of Crapper (J. Fluid Mech., vol. 2, 1957, pp. 532–540) subject to two-dimensional perturbations (both subharmonic and superharmonic). By linearizing a set of exact one-dimensional non-local evolution equations, a stability analysis is performed with the aid of Floquet theory. To validate our results, the exact evolution equations are integrated numerically in time and the numerical solutions are compared with the time evolution of linear normal modes. For superharmonic perturbations, contrary to Hogan (J. Fluid Mech., vol. 190, 1988, pp. 165–177), who detected two bubbles of instability for intermediate amplitudes, our results indicate that Crapper’s capillary waves are linearly stable to superharmonic disturbances for all wave amplitudes. For subharmonic perturbations, it is found that Crapper’s capillary waves are unstable, and our results generalize to the highly nonlinear regime the analysis for small amplitudes presented by Chen & Saffman (Stud. Appl. Maths, vol. 72, 1985, pp. 125–147).
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2012.56