Tissue perfusion rate estimation with compression-based photoacoustic-ultrasound imaging
Tissue perfusion is essential for transporting blood oxygen and nutrients. Measurement of tissue perfusion rate would have a significant impact in clinical and preclinical arenas. However, there are few techniques to image this important parameter and they typically require contrast agents. A label-...
Saved in:
Published in | Journal of biomedical optics Vol. 23; no. 1; p. 016010 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1083-3668 1560-2281 1560-2281 |
DOI | 10.1117/1.JBO.23.1.016010 |
Cover
Summary: | Tissue perfusion is essential for transporting blood oxygen and nutrients. Measurement of tissue perfusion rate would have a significant impact in clinical and preclinical arenas. However, there are few techniques to image this important parameter and they typically require contrast agents. A label-free methodology based on tissue compression and imaging with a high-frequency photoacoustic-ultrasound system is introduced for estimating and visualizing tissue perfusion rates. Experiments demonstrate statistically significant differences in depth-resolved perfusion rates in a human subject with various temperature exposure conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1083-3668 1560-2281 1560-2281 |
DOI: | 10.1117/1.JBO.23.1.016010 |