Global optimal hybrid geometric active contour for automated lung segmentation on CT images

Lung segmentation on thoracic CT images plays an important role in early detection, diagnosis and 3D visualization of lung cancer. The segmentation accuracy, stability, and efficiency of serial CT scans have a significant impact on the performance of computer-aided detection. This paper proposes a g...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 91; pp. 168 - 180
Main Authors Zhang, Weihang, Wang, Xue, Zhang, Pengbo, Chen, Junfeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2017.10.005

Cover

More Information
Summary:Lung segmentation on thoracic CT images plays an important role in early detection, diagnosis and 3D visualization of lung cancer. The segmentation accuracy, stability, and efficiency of serial CT scans have a significant impact on the performance of computer-aided detection. This paper proposes a global optimal hybrid geometric active contour model for automated lung segmentation on CT images. Firstly, the combination of global region and edge information leads to high segmentation accuracy in lung regions with weak boundaries or narrow bands. Secondly, due to the global optimality of energy functional, the proposed model is robust to the initial position of level set function and requires fewer iterations. Thus, the stability and efficiency of lung segmentation on serial CT slices can be greatly improved by taking advantage of the information between adjacent slices. In addition, to achieve the whole process of automated segmentation for lung cancer, two assistant algorithms based on prior shape and anatomical knowledge are proposed. The algorithms not only automatically separate the left and right lungs, but also include juxta-pleural tumors into the segmentation result. The proposed method was quantitatively validated on subjects from the publicly available LIDC-IDRI and our own data sets. Exhaustive experimental results demonstrate the superiority and competency of our method, especially compared with the typical edge-based geometric active contour model. •A global optimal active contour model is proposed for automated lung segmentation.•The combination of region and edge information leads to high segmentation accuracy.•The global optimality improves the segmentation robustness and stability.•The proposed model requires fewer iterations and leads to high efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2017.10.005