Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges

Physics-informed neural networks (PINNs) represent a significant advancement at the intersection of machine learning and physical sciences, offering a powerful framework for solving complex problems governed by physical laws. This survey provides a comprehensive review of the current state of resear...

Full description

Saved in:
Bibliographic Details
Published inAI (Basel) Vol. 5; no. 3; pp. 1534 - 1557
Main Authors Farea, Amer, Yli-Harja, Olli, Emmert-Streib, Frank
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text
ISSN2673-2688
2673-2688
DOI10.3390/ai5030074

Cover

More Information
Summary:Physics-informed neural networks (PINNs) represent a significant advancement at the intersection of machine learning and physical sciences, offering a powerful framework for solving complex problems governed by physical laws. This survey provides a comprehensive review of the current state of research on PINNs, highlighting their unique methodologies, applications, challenges, and future directions. We begin by introducing the fundamental concepts underlying neural networks and the motivation for integrating physics-based constraints. We then explore various PINN architectures and techniques for incorporating physical laws into neural network training, including approaches to solving partial differential equations (PDEs) and ordinary differential equations (ODEs). Additionally, we discuss the primary challenges faced in developing and applying PINNs, such as computational complexity, data scarcity, and the integration of complex physical laws. Finally, we identify promising future research directions. Overall, this survey seeks to provide a foundational understanding of PINNs within this rapidly evolving field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2673-2688
2673-2688
DOI:10.3390/ai5030074