Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges
Physics-informed neural networks (PINNs) represent a significant advancement at the intersection of machine learning and physical sciences, offering a powerful framework for solving complex problems governed by physical laws. This survey provides a comprehensive review of the current state of resear...
Saved in:
Published in | AI (Basel) Vol. 5; no. 3; pp. 1534 - 1557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-2688 2673-2688 |
DOI | 10.3390/ai5030074 |
Cover
Summary: | Physics-informed neural networks (PINNs) represent a significant advancement at the intersection of machine learning and physical sciences, offering a powerful framework for solving complex problems governed by physical laws. This survey provides a comprehensive review of the current state of research on PINNs, highlighting their unique methodologies, applications, challenges, and future directions. We begin by introducing the fundamental concepts underlying neural networks and the motivation for integrating physics-based constraints. We then explore various PINN architectures and techniques for incorporating physical laws into neural network training, including approaches to solving partial differential equations (PDEs) and ordinary differential equations (ODEs). Additionally, we discuss the primary challenges faced in developing and applying PINNs, such as computational complexity, data scarcity, and the integration of complex physical laws. Finally, we identify promising future research directions. Overall, this survey seeks to provide a foundational understanding of PINNs within this rapidly evolving field. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2673-2688 2673-2688 |
DOI: | 10.3390/ai5030074 |