Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters

Mapping of total suspended matter concentration (TSM) can be achieved from space-based optical sensors and has growing applications related to sediment transport. A TSM algorithm is developed here for turbid waters, suitable for any ocean colour sensor including MERIS, MODIS and SeaWiFS. Theory show...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 114; no. 4; pp. 854 - 866
Main Authors Nechad, B., Ruddick, K.G., Park, Y.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.04.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2009.11.022

Cover

More Information
Summary:Mapping of total suspended matter concentration (TSM) can be achieved from space-based optical sensors and has growing applications related to sediment transport. A TSM algorithm is developed here for turbid waters, suitable for any ocean colour sensor including MERIS, MODIS and SeaWiFS. Theory shows that use of a single band provides a robust and TSM-sensitive algorithm provided the band is chosen appropriately. Hyperspectral calibration is made using seaborne TSM and reflectance spectra collected in the southern North Sea. Two versions of the algorithm are considered: one which gives directly TSM from reflectance, the other uses the reflectance model of Park and Ruddick (2005) to take account of bidirectional effects. Applying a non-linear regression analysis to the calibration data set gave relative errors in TSM estimation less than 30% in the spectral range 670–750 nm. Validation of this algorithm for MODIS and MERIS retrieved reflectances with concurrent in situ measurements gave the lowest relative errors in TSM estimates, less than 40%, for MODIS bands 667 nm and 678 nm and for MERIS bands 665 nm and 681 nm. Consistency of the approach in a multisensor context (SeaWiFS, MERIS, and MODIS) is demonstrated both for single point time series and for individual images.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2009.11.022