Room temperature magnetoelectric sensor arrays for application of detecting iron profiles in organs

[Display omitted] Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 311; p. 112064
Main Authors Xi, Hao, Lu, Meng-Chien, Yang, Qing X., Zhang, Q.M.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.08.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2020.112064

Cover

Abstract [Display omitted] Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3 ml of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.
AbstractList Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3 ml of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.
[Display omitted] Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3 ml of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.
Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3cc of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-Channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.
Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3cc of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-Channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3cc of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-Channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.
ArticleNumber 112064
Author Yang, Qing X.
Lu, Meng-Chien
Zhang, Q.M.
Xi, Hao
AuthorAffiliation 2 Departments of Radiology and Neurosurgery Penn State College of Medicine, Hershey, PA 17033, USA
1 Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
AuthorAffiliation_xml – name: 2 Departments of Radiology and Neurosurgery Penn State College of Medicine, Hershey, PA 17033, USA
– name: 1 Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
Author_xml – sequence: 1
  givenname: Hao
  surname: Xi
  fullname: Xi, Hao
  organization: Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 2
  givenname: Meng-Chien
  surname: Lu
  fullname: Lu, Meng-Chien
  organization: Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 3
  givenname: Qing X.
  surname: Yang
  fullname: Yang, Qing X.
  organization: Departments of Radiology and Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
– sequence: 4
  givenname: Q.M.
  surname: Zhang
  fullname: Zhang, Q.M.
  email: qxz1@psu.edu
  organization: Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
BookMark eNp9kU1rFTEUhoNU7G31B7gbcONmrvmczCAIUtQWCoLoOpybnLnmMpOMSabQf99cb13YRVf5OM_7Hs55L8hZiAEJecvollHWfThsc4Atp7y-GaedfEE2rNeiFbQbzsiGDly2kkt9Ti5yPlBKhdD6FTkXvOuYVGpD7I8Y56bgvGCCsiZsZtgHLBEntCV522QMOaYGUoL73IzH67JM3kLxMTRxbByWivqwb3yqP0uKo58wN75W0x5Cfk1ejjBlfPN4XpJfX7_8vLpub79_u7n6fNtaqbrSut3AHFoHFpjWliOwTosdRcGAOj6CpYMSoKXdOaf6DgGEoEr1jDHJhBaX5NPJd1l3MzqLoSSYzJL8DOneRPDm_0rwv80-3hktlO51Xw3ePxqk-GfFXMzss8VpgoBxzYZLLnrKmRIVffcEPcQ1hTpepaRWWtCBVUqfKJtizglHY335u7ja30-GUXMM0hxMDdIcgzSnIKuSPVH-G-M5zceTBuuS7zwmk63HYNH5VBMyLvpn1A8_hrjg
CitedBy_id crossref_primary_10_1002_adfm_202401544
crossref_primary_10_1038_s41598_024_59015_5
crossref_primary_10_3390_s21227594
crossref_primary_10_1016_j_sna_2023_114803
crossref_primary_10_1002_adfm_202213582
crossref_primary_10_1063_5_0035059
Cites_doi 10.1088/0967-3334/28/4/002
10.1111/j.1600-0676.1994.tb00073.x
10.1063/1.4954043
10.1038/srep29740
10.1016/S0168-8278(96)80070-5
10.1182/asheducation-2009.1.215
10.1109/TMAG.2007.904839
10.1002/mds3.10004
10.1016/S0924-4247(01)00866-4
10.1109/TMAG.2007.901352
10.1063/1.2836410
10.1063/1.3231614
10.1049/el.2010.1336
10.1063/1.4915610
10.1109/JSEN.2011.2154325
10.1063/1.3358133
10.1063/1.5030460
10.1063/1.1372360
10.1109/JMEMS.2012.2215012
10.1109/LMAG.2011.2151178
10.1063/1.2420772
10.1016/0168-8278(95)80060-3
10.1038/nmat1805
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2020
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
7X8
5PM
DOI 10.1016/j.sna.2020.112064
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts


MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID PMC7357878
10_1016_j_sna_2020_112064
S0924424719320722
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c456t-db91decdaca177c2ea1673b0e31a0d2fac0953a74cbdd586eaa33055811141373
IEDL.DBID AIKHN
ISSN 0924-4247
IngestDate Thu Aug 21 17:57:19 EDT 2025
Sat Sep 27 21:36:23 EDT 2025
Sun Sep 07 03:38:08 EDT 2025
Tue Jul 01 01:05:32 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
Fri Feb 23 02:46:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetoelectric, Sensor, SQUID, Piezoelectric, Composites, Iron concentration, Non-invasive, Array, Magnetics, Simulation, Measurement, Biomagnetics, Biomedical sensor, Iron overload
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-db91decdaca177c2ea1673b0e31a0d2fac0953a74cbdd586eaa33055811141373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Q.M.Z. initiated the study, along with Q.X.Y., Q.M.Z. directed the study. H.X., and M.-C.L carried out the study. Q.M.Z., H.X. and Q.X.Y. wrote the manuscript with comments from all authors.
Author_Statements
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7357878
PMID 32661455
PQID 2447573091
PQPubID 2045401
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7357878
proquest_miscellaneous_2423802153
proquest_journals_2447573091
crossref_citationtrail_10_1016_j_sna_2020_112064
crossref_primary_10_1016_j_sna_2020_112064
elsevier_sciencedirect_doi_10_1016_j_sna_2020_112064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Fang, Lu, Li, Datta, Zhang, El Tachi (bib0145) 2009; 95
Li, Zhao, Zhang, Datta (bib0015) 2010; 46
Fisher, Farrell (bib0050) 2007
Ambu, Crisponi, Sciot (bib0110) 1995; 23
Lu, Fang, Furman, Wang, Zhang, Mudryk, Gschneidner, Pecharsky, Nan (bib0150) 2010; 96
Vileneuve, Bilodeau, Lepage, Côté, Lefebvre (bib0055) 1996; 25
Lal, Avrin, Kolotovska, Calvelli, Weyhmiller (bib0080) 2018; 132
Drljaca, Vincent, Besse, Popovic (bib0135) 2002; 97
Zhao, Ninad, Li, Datta, Zhang (bib0120) 2011; 11
Lu, Mei, Jeong, Xiang, Xie, Zhang (bib0035) 2015; 106
Avrin, Kumar (bib0075) 2007; 28
Xi, Lu, Luo, Yang, Zhang (bib0095) 2018; 1
Xi, Lu, Qian, Zhang, Rupprecht, Yang (bib0090) 2017
Li, Zhao, Zhang, Datta (bib0115) 2010; 46
Freeman, Wang, Sumaria, Schiff, Liu, Tadigadapa (bib0040) 2018; 8
Dong, Zhai, Li, Viehland (bib0140) 2006; 89
Farrell, Allen, Whilden, Tripp, Usoskin, Sheth, Brittenham (bib0065) 2007; 43
Villeneuve, Bilodeau, Lepage (bib0100) 1996; 25
Xi, Qian, Lu, Mei, Rupprecht, Yang, Zhang (bib0085) 2016; 6
Li, Misra, Fang, Wu, Schiffer, Zhang, Datta (bib0030) 2013; 22
Fang, Lu, Li, Datta, Zhang, Tahchi (bib0010) 2009; 95
Zhao (bib0130) 2011
Ramesh, Spaldin (bib0005) 2007; 6
Gillette, Geiler, Gray, Viehland, Vittoria, Harris (bib0020) 2011; 2
Nan, Bichurin, Dong, Viehland, Srinivasan (bib0025) 2008; 103
Fischer, Harmatz (bib0060) 2009; 2009
Qu, Gollapudi, Bidthanapally, Srinivasan, Petrov, Qu (bib0045) 2016; 108
Xi (bib0155) 2019
Faa, Sciot, Farci (bib0105) 1994; 14
Farrell, Allen, Whilden, Kidane, Baig, Tripp, Brown, Sheth, Brittenhamin (bib0070) 2007; 43
Lu, Jeong, Cheng, Zhang, Luo, Yin, Viehland (bib0125) 2001; 78
Xi (10.1016/j.sna.2020.112064_bib0095) 2018; 1
Fang (10.1016/j.sna.2020.112064_bib0010) 2009; 95
Dong (10.1016/j.sna.2020.112064_bib0140) 2006; 89
Zhao (10.1016/j.sna.2020.112064_bib0120) 2011; 11
Faa (10.1016/j.sna.2020.112064_bib0105) 1994; 14
Farrell (10.1016/j.sna.2020.112064_bib0070) 2007; 43
Xi (10.1016/j.sna.2020.112064_bib0090) 2017
Fisher (10.1016/j.sna.2020.112064_bib0050) 2007
Villeneuve (10.1016/j.sna.2020.112064_bib0100) 1996; 25
Lu (10.1016/j.sna.2020.112064_bib0150) 2010; 96
Ramesh (10.1016/j.sna.2020.112064_bib0005) 2007; 6
Li (10.1016/j.sna.2020.112064_bib0030) 2013; 22
Gillette (10.1016/j.sna.2020.112064_bib0020) 2011; 2
Qu (10.1016/j.sna.2020.112064_bib0045) 2016; 108
Lu (10.1016/j.sna.2020.112064_bib0125) 2001; 78
Vileneuve (10.1016/j.sna.2020.112064_bib0055) 1996; 25
Li (10.1016/j.sna.2020.112064_bib0115) 2010; 46
Zhao (10.1016/j.sna.2020.112064_bib0130) 2011
Avrin (10.1016/j.sna.2020.112064_bib0075) 2007; 28
Li (10.1016/j.sna.2020.112064_bib0015) 2010; 46
Nan (10.1016/j.sna.2020.112064_bib0025) 2008; 103
Freeman (10.1016/j.sna.2020.112064_bib0040) 2018; 8
Fischer (10.1016/j.sna.2020.112064_bib0060) 2009; 2009
Lu (10.1016/j.sna.2020.112064_bib0035) 2015; 106
Farrell (10.1016/j.sna.2020.112064_bib0065) 2007; 43
Fang (10.1016/j.sna.2020.112064_bib0145) 2009; 95
Xi (10.1016/j.sna.2020.112064_bib0085) 2016; 6
Xi (10.1016/j.sna.2020.112064_bib0155) 2019
Drljaca (10.1016/j.sna.2020.112064_bib0135) 2002; 97
Lal (10.1016/j.sna.2020.112064_bib0080) 2018; 132
Ambu (10.1016/j.sna.2020.112064_bib0110) 1995; 23
References_xml – start-page: 529
  year: 2007
  ident: bib0050
  article-title: Liver Iron Susceptometry in Magnetism in Medicine: A Handbook
– volume: 2
  year: 2011
  ident: bib0020
  publication-title: IEEE Magn. Lett.
– volume: 132
  year: 2018
  ident: bib0080
  publication-title: Blood
– year: 2011
  ident: bib0130
  article-title: Ph.D. thesis, The Pennsylvania State University
– volume: 6
  start-page: 21
  year: 2007
  ident: bib0005
  publication-title: Nature Mater
– volume: 78
  start-page: 3109
  year: 2001
  ident: bib0125
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 172
  year: 1996
  end-page: 177
  ident: bib0100
  article-title: Variability in hepatic iron concentration measurement from needle-biopsy specimens
  publication-title: J. Hepatol.
– volume: 97
  start-page: 10
  year: 2002
  ident: bib0135
  publication-title: Sens. Actuators A Phys.
– volume: 11
  start-page: 2260
  year: 2011
  ident: bib0120
  publication-title: IEEE Sensors J.
– volume: 22
  start-page: 71
  year: 2013
  ident: bib0030
  publication-title: J. Microelectromech. Syst.
– volume: 106
  start-page: 112905
  year: 2015
  ident: bib0035
  publication-title: Appl. Phys. Lett.
– volume: 43
  start-page: 4030
  year: 2007
  ident: bib0065
  publication-title: IEEE Trans. Magn.
– volume: 95
  start-page: 112903
  year: 2009
  ident: bib0010
  publication-title: Appl. Phys. Lett.
– volume: 108
  start-page: 242412
  year: 2016
  ident: bib0045
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 172
  year: 1996
  ident: bib0055
  publication-title: J. Hepatol.
– volume: 46
  start-page: 1132
  year: 2010
  ident: bib0015
  publication-title: Electron. Lett.
– volume: 28
  year: 2007
  ident: bib0075
  publication-title: Physiol. Meas.
– start-page: 1
  year: 2017
  end-page: 3
  ident: bib0090
  article-title: 2016 IEEE Sensor
– volume: 95
  start-page: 112903
  year: 2009
  ident: bib0145
  publication-title: Appl. Phys. Lett.
– volume: 43
  start-page: 3543
  year: 2007
  ident: bib0070
  publication-title: IEEE Trans. Magn.
– volume: 2009
  start-page: 215
  year: 2009
  ident: bib0060
  publication-title: Hematology
– year: 2019
  ident: bib0155
  article-title: Ph. D. Thesis, The Penn State University
– volume: 103
  start-page: 031101
  year: 2008
  ident: bib0025
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 29740
  year: 2016
  ident: bib0085
  publication-title: Sci. Rep.
– volume: 8
  start-page: 065214
  year: 2018
  ident: bib0040
  publication-title: AIP Adv.
– volume: 14
  start-page: 193
  year: 1994
  end-page: 199
  ident: bib0105
  article-title: Iron concentration and distribution in the newborn liver
  publication-title: Liver
– volume: 23
  start-page: 544
  year: 1995
  end-page: 549
  ident: bib0110
  article-title: Uneven hepatic iron and phosphorus distribution in beta-thalassemia
  publication-title: J. Hepatol.
– volume: 1
  start-page: e10004
  year: 2018
  ident: bib0095
  publication-title: Med. Devices. Sens.
– volume: 96
  start-page: 102902
  year: 2010
  ident: bib0150
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 1132
  year: 2010
  ident: bib0115
  publication-title: Electron. Lett.
– volume: 89
  start-page: 252904
  year: 2006
  ident: bib0140
  publication-title: Appl. Phys. Lett.
– volume: 28
  year: 2007
  ident: 10.1016/j.sna.2020.112064_bib0075
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/4/002
– volume: 14
  start-page: 193
  issue: 4
  year: 1994
  ident: 10.1016/j.sna.2020.112064_bib0105
  article-title: Iron concentration and distribution in the newborn liver
  publication-title: Liver
  doi: 10.1111/j.1600-0676.1994.tb00073.x
– volume: 108
  start-page: 242412
  year: 2016
  ident: 10.1016/j.sna.2020.112064_bib0045
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4954043
– volume: 6
  start-page: 29740
  year: 2016
  ident: 10.1016/j.sna.2020.112064_bib0085
  publication-title: Sci. Rep.
  doi: 10.1038/srep29740
– volume: 25
  start-page: 172
  issue: 2
  year: 1996
  ident: 10.1016/j.sna.2020.112064_bib0100
  article-title: Variability in hepatic iron concentration measurement from needle-biopsy specimens
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(96)80070-5
– volume: 25
  start-page: 172
  year: 1996
  ident: 10.1016/j.sna.2020.112064_bib0055
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(96)80070-5
– year: 2011
  ident: 10.1016/j.sna.2020.112064_bib0130
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2020.112064_bib0090
– volume: 2009
  start-page: 215
  year: 2009
  ident: 10.1016/j.sna.2020.112064_bib0060
  publication-title: Hematology
  doi: 10.1182/asheducation-2009.1.215
– volume: 43
  start-page: 4030
  year: 2007
  ident: 10.1016/j.sna.2020.112064_bib0065
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2007.904839
– volume: 1
  start-page: e10004
  year: 2018
  ident: 10.1016/j.sna.2020.112064_bib0095
  publication-title: Med. Devices. Sens.
  doi: 10.1002/mds3.10004
– volume: 97
  start-page: 10
  year: 2002
  ident: 10.1016/j.sna.2020.112064_bib0135
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(01)00866-4
– volume: 43
  start-page: 3543
  year: 2007
  ident: 10.1016/j.sna.2020.112064_bib0070
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2007.901352
– volume: 103
  start-page: 031101
  year: 2008
  ident: 10.1016/j.sna.2020.112064_bib0025
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2836410
– volume: 95
  start-page: 112903
  year: 2009
  ident: 10.1016/j.sna.2020.112064_bib0145
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3231614
– volume: 46
  start-page: 1132
  year: 2010
  ident: 10.1016/j.sna.2020.112064_bib0015
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.1336
– volume: 106
  start-page: 112905
  year: 2015
  ident: 10.1016/j.sna.2020.112064_bib0035
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4915610
– volume: 46
  start-page: 1132
  year: 2010
  ident: 10.1016/j.sna.2020.112064_bib0115
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.1336
– volume: 11
  start-page: 2260
  year: 2011
  ident: 10.1016/j.sna.2020.112064_bib0120
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2011.2154325
– year: 2019
  ident: 10.1016/j.sna.2020.112064_bib0155
– volume: 96
  start-page: 102902
  year: 2010
  ident: 10.1016/j.sna.2020.112064_bib0150
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3358133
– volume: 8
  start-page: 065214
  year: 2018
  ident: 10.1016/j.sna.2020.112064_bib0040
  publication-title: AIP Adv.
  doi: 10.1063/1.5030460
– volume: 78
  start-page: 3109
  year: 2001
  ident: 10.1016/j.sna.2020.112064_bib0125
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1372360
– volume: 95
  start-page: 112903
  year: 2009
  ident: 10.1016/j.sna.2020.112064_bib0010
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3231614
– volume: 132
  year: 2018
  ident: 10.1016/j.sna.2020.112064_bib0080
  publication-title: Blood
– volume: 22
  start-page: 71
  year: 2013
  ident: 10.1016/j.sna.2020.112064_bib0030
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2012.2215012
– start-page: 529
  year: 2007
  ident: 10.1016/j.sna.2020.112064_bib0050
– volume: 2
  year: 2011
  ident: 10.1016/j.sna.2020.112064_bib0020
  publication-title: IEEE Magn. Lett.
  doi: 10.1109/LMAG.2011.2151178
– volume: 89
  start-page: 252904
  year: 2006
  ident: 10.1016/j.sna.2020.112064_bib0140
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2420772
– volume: 23
  start-page: 544
  issue: 5
  year: 1995
  ident: 10.1016/j.sna.2020.112064_bib0110
  article-title: Uneven hepatic iron and phosphorus distribution in beta-thalassemia
  publication-title: J. Hepatol.
  doi: 10.1016/0168-8278(95)80060-3
– volume: 6
  start-page: 21
  year: 2007
  ident: 10.1016/j.sna.2020.112064_bib0005
  publication-title: Nature Mater
  doi: 10.1038/nmat1805
SSID ssj0003377
Score 2.3514633
Snippet [Display omitted] Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with...
Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology....
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112064
SubjectTerms Feasibility
Iron
Liver
Low temperature physics
Magnetic fields
Magnetic shielding
Magnetoelectric, Sensor, SQUID, Piezoelectric, Composites, Iron concentration, Non-invasive, Array, Magnetics, Simulation, Measurement, Biomagnetics, Biomedical sensor, Iron overload
Mapping
Organs
Room temperature
Sensor arrays
Sensors
Single crystals
Title Room temperature magnetoelectric sensor arrays for application of detecting iron profiles in organs
URI https://dx.doi.org/10.1016/j.sna.2020.112064
https://www.proquest.com/docview/2447573091
https://www.proquest.com/docview/2423802153
https://pubmed.ncbi.nlm.nih.gov/PMC7357878
Volume 311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QUOFZ9iS1sZiRNS2MTOxtljVVEtIPUAVOrNcuwxBEFSbbaHXvrbmUmcZffQHrglsSeyxs7Mc2b8BuAdEgQorAqJstInuUpdskhllagckQC68yH02RYXxfIy_3w1v9qDs_EsDKdVRts_2PTeWscns6jN2XVdz76ltHXIJRlXgiCplmSH9yV5-3IC-6efviwvNgZZqb4AI_dPWGAMbvZpXl3D7EOyP0uTFvl97mkLfu4mT255o_OncBBhpDgdRvoM9rB5Dk-2yAVfgPtKmFgw9VTkTRZ_7I8G1-1Q-aZ2oqMtbLsSdrWyt50IfPkvnC3aIDxyiIHeJvgwnIj1vTtRUyuf4exewuX5x-9nyySWVEgcIaV14qtF5tF562ymtZNos0KrKkWV2dTLYB3zz1mdu8r7eVmgtYo5wUoyieTutHoFk6Zt8DUI67EM0ldeeeQ6ZlXuQqlJADE4r_0U0lGTxkW-cS578duMiWW_DCnfsPLNoPwpvN-IXA9kGw91zsfpMTsrxpAzeEjsaJxKEz_XzkimPSRbt8im8HbTTB8aR09sg-0N9yF0wwhJTUHvLIHNWJmqe7elqX_2lN2aSYV0efh_Y34Dj_mOf2Vn8yOYrFc3eExYaF2dwKMPd9lJXPF_AZUlDUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V20PpAUEBdaGAK3FCijaxvXH2WFVUW9ruAVqpN8vxRxsESbXZHvj3zCTOsnugB25Rxo6ssT3znBm_AfjkEQLkRoREGO4SKVKbzFJeJkJ6jwDduhC6bItFPr-RX2-ntztwOtyFobTKaPt7m95Z6_hmErU5eaiqyfcUjw6So3FFCJIqjnZ4V1JR6xHsnpxfzBdrgyxEV4CR2ifUYQhudmlebU3sQ7y7S5Pm8l_uaQN-bidPbnijsxfwPMJIdtKP9CXs-PoA9jfIBV-B_YaYmBH1VORNZr_MXe1XTV_5prKsxSNss2RmuTS_Wxbo8W84mzWBOU8hBvwao8twLNb3blmFUrrD2b6Gm7Mv16fzJJZUSCwipVXiylnmvHXGmkwpy73JciXK1IvMpI4HY4l_zihpS-emRe6NEcQJVqBJRHenxBsY1U3tD4EZ54vAXemE81THrJQ2FAo7eB-sU24M6aBJbSPfOJW9-KmHxLIfGpWvSfm6V_4YPq-7PPRkG081lsP06K0Vo9EZPNXtaJhKHbdrqznRHqKtm2VjOF6LcaNR9MTUvnmkNohuCCGJMaitJbAeK1F1b0vq6r6j7FZEKqSKt_835o-wN7--utSX54uLd_CMJPRbO5sewWi1fPTvERetyg9x3f8B640PLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room+Temperature+Magnetoelectric+Sensor+Arrays+For+Application+of+Detecting+Iron+Profiles+in+Organs&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Xi%2C+Hao&rft.au=Lu%2C+Meng-Chien&rft.au=Yang%2C+Qing+X.&rft.au=Zhang%2C+Q.+M.&rft.date=2020-08-15&rft.issn=0924-4247&rft.volume=311&rft_id=info:doi/10.1016%2Fj.sna.2020.112064&rft_id=info%3Apmid%2F32661455&rft.externalDocID=PMC7357878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon