Room temperature magnetoelectric sensor arrays for application of detecting iron profiles in organs
[Display omitted] Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 311; p. 112064 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2020.112064 |
Cover
Abstract | [Display omitted]
Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3 ml of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile. |
---|---|
AbstractList | Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3 ml of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile. [Display omitted] Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3 ml of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile. Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3cc of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-Channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile. Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3cc of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-Channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile.Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology. However, SQUID based BLS suffers high costs and cumbersome cryogenic requirements that prevent SQUID BLS from being adopted by clinical applications. Recently, we demonstrated that a single channel ME sensor with piezo-single crystals could detect LIC from only 3cc of mouse liver tissue without any magnetic field shielding. The results demonstrated not only the sensitivity of ME sensor system for LIC but also the feasibility for mapping LIC profiles spatially. This investigation further developed ME sensor arrays, exploiting the compact size and room temperature operation. A Dual-Channel 1-D ME sensor array along the vertical, Z-direction, was developed and shown to be sensitive to the skin-liver distance change which can be utilized to calibrate and eliminate the inter-subject variability of the LIC measurement due to skin-liver distance. With phantom having spatially dependent iron concentrations, the 1-D ME sensor array was capable of mapping the one-dimensional profile of the iron concentration in the horizontal X- and Y-directions. The results of the prototype sensor devices show the feasibility of an array ME-sensors for imaging iron profile. |
ArticleNumber | 112064 |
Author | Yang, Qing X. Lu, Meng-Chien Zhang, Q.M. Xi, Hao |
AuthorAffiliation | 2 Departments of Radiology and Neurosurgery Penn State College of Medicine, Hershey, PA 17033, USA 1 Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA |
AuthorAffiliation_xml | – name: 2 Departments of Radiology and Neurosurgery Penn State College of Medicine, Hershey, PA 17033, USA – name: 1 Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA |
Author_xml | – sequence: 1 givenname: Hao surname: Xi fullname: Xi, Hao organization: Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: Meng-Chien surname: Lu fullname: Lu, Meng-Chien organization: Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 3 givenname: Qing X. surname: Yang fullname: Yang, Qing X. organization: Departments of Radiology and Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA – sequence: 4 givenname: Q.M. surname: Zhang fullname: Zhang, Q.M. email: qxz1@psu.edu organization: Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA |
BookMark | eNp9kU1rFTEUhoNU7G31B7gbcONmrvmczCAIUtQWCoLoOpybnLnmMpOMSabQf99cb13YRVf5OM_7Hs55L8hZiAEJecvollHWfThsc4Atp7y-GaedfEE2rNeiFbQbzsiGDly2kkt9Ti5yPlBKhdD6FTkXvOuYVGpD7I8Y56bgvGCCsiZsZtgHLBEntCV522QMOaYGUoL73IzH67JM3kLxMTRxbByWivqwb3yqP0uKo58wN75W0x5Cfk1ejjBlfPN4XpJfX7_8vLpub79_u7n6fNtaqbrSut3AHFoHFpjWliOwTosdRcGAOj6CpYMSoKXdOaf6DgGEoEr1jDHJhBaX5NPJd1l3MzqLoSSYzJL8DOneRPDm_0rwv80-3hktlO51Xw3ePxqk-GfFXMzss8VpgoBxzYZLLnrKmRIVffcEPcQ1hTpepaRWWtCBVUqfKJtizglHY335u7ja30-GUXMM0hxMDdIcgzSnIKuSPVH-G-M5zceTBuuS7zwmk63HYNH5VBMyLvpn1A8_hrjg |
CitedBy_id | crossref_primary_10_1002_adfm_202401544 crossref_primary_10_1038_s41598_024_59015_5 crossref_primary_10_3390_s21227594 crossref_primary_10_1016_j_sna_2023_114803 crossref_primary_10_1002_adfm_202213582 crossref_primary_10_1063_5_0035059 |
Cites_doi | 10.1088/0967-3334/28/4/002 10.1111/j.1600-0676.1994.tb00073.x 10.1063/1.4954043 10.1038/srep29740 10.1016/S0168-8278(96)80070-5 10.1182/asheducation-2009.1.215 10.1109/TMAG.2007.904839 10.1002/mds3.10004 10.1016/S0924-4247(01)00866-4 10.1109/TMAG.2007.901352 10.1063/1.2836410 10.1063/1.3231614 10.1049/el.2010.1336 10.1063/1.4915610 10.1109/JSEN.2011.2154325 10.1063/1.3358133 10.1063/1.5030460 10.1063/1.1372360 10.1109/JMEMS.2012.2215012 10.1109/LMAG.2011.2151178 10.1063/1.2420772 10.1016/0168-8278(95)80060-3 10.1038/nmat1805 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Aug 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2020 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M 7X8 5PM |
DOI | 10.1016/j.sna.2020.112064 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | PMC7357878 10_1016_j_sna_2020_112064 S0924424719320722 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c456t-db91decdaca177c2ea1673b0e31a0d2fac0953a74cbdd586eaa33055811141373 |
IEDL.DBID | AIKHN |
ISSN | 0924-4247 |
IngestDate | Thu Aug 21 17:57:19 EDT 2025 Sat Sep 27 21:36:23 EDT 2025 Sun Sep 07 03:38:08 EDT 2025 Tue Jul 01 01:05:32 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 Fri Feb 23 02:46:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetoelectric, Sensor, SQUID, Piezoelectric, Composites, Iron concentration, Non-invasive, Array, Magnetics, Simulation, Measurement, Biomagnetics, Biomedical sensor, Iron overload |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-db91decdaca177c2ea1673b0e31a0d2fac0953a74cbdd586eaa33055811141373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Q.M.Z. initiated the study, along with Q.X.Y., Q.M.Z. directed the study. H.X., and M.-C.L carried out the study. Q.M.Z., H.X. and Q.X.Y. wrote the manuscript with comments from all authors. Author_Statements |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7357878 |
PMID | 32661455 |
PQID | 2447573091 |
PQPubID | 2045401 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7357878 proquest_miscellaneous_2423802153 proquest_journals_2447573091 crossref_citationtrail_10_1016_j_sna_2020_112064 crossref_primary_10_1016_j_sna_2020_112064 elsevier_sciencedirect_doi_10_1016_j_sna_2020_112064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-15 |
PublicationDateYYYYMMDD | 2020-08-15 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Fang, Lu, Li, Datta, Zhang, El Tachi (bib0145) 2009; 95 Li, Zhao, Zhang, Datta (bib0015) 2010; 46 Fisher, Farrell (bib0050) 2007 Ambu, Crisponi, Sciot (bib0110) 1995; 23 Lu, Fang, Furman, Wang, Zhang, Mudryk, Gschneidner, Pecharsky, Nan (bib0150) 2010; 96 Vileneuve, Bilodeau, Lepage, Côté, Lefebvre (bib0055) 1996; 25 Lal, Avrin, Kolotovska, Calvelli, Weyhmiller (bib0080) 2018; 132 Drljaca, Vincent, Besse, Popovic (bib0135) 2002; 97 Zhao, Ninad, Li, Datta, Zhang (bib0120) 2011; 11 Lu, Mei, Jeong, Xiang, Xie, Zhang (bib0035) 2015; 106 Avrin, Kumar (bib0075) 2007; 28 Xi, Lu, Luo, Yang, Zhang (bib0095) 2018; 1 Xi, Lu, Qian, Zhang, Rupprecht, Yang (bib0090) 2017 Li, Zhao, Zhang, Datta (bib0115) 2010; 46 Freeman, Wang, Sumaria, Schiff, Liu, Tadigadapa (bib0040) 2018; 8 Dong, Zhai, Li, Viehland (bib0140) 2006; 89 Farrell, Allen, Whilden, Tripp, Usoskin, Sheth, Brittenham (bib0065) 2007; 43 Villeneuve, Bilodeau, Lepage (bib0100) 1996; 25 Xi, Qian, Lu, Mei, Rupprecht, Yang, Zhang (bib0085) 2016; 6 Li, Misra, Fang, Wu, Schiffer, Zhang, Datta (bib0030) 2013; 22 Fang, Lu, Li, Datta, Zhang, Tahchi (bib0010) 2009; 95 Zhao (bib0130) 2011 Ramesh, Spaldin (bib0005) 2007; 6 Gillette, Geiler, Gray, Viehland, Vittoria, Harris (bib0020) 2011; 2 Nan, Bichurin, Dong, Viehland, Srinivasan (bib0025) 2008; 103 Fischer, Harmatz (bib0060) 2009; 2009 Qu, Gollapudi, Bidthanapally, Srinivasan, Petrov, Qu (bib0045) 2016; 108 Xi (bib0155) 2019 Faa, Sciot, Farci (bib0105) 1994; 14 Farrell, Allen, Whilden, Kidane, Baig, Tripp, Brown, Sheth, Brittenhamin (bib0070) 2007; 43 Lu, Jeong, Cheng, Zhang, Luo, Yin, Viehland (bib0125) 2001; 78 Xi (10.1016/j.sna.2020.112064_bib0095) 2018; 1 Fang (10.1016/j.sna.2020.112064_bib0010) 2009; 95 Dong (10.1016/j.sna.2020.112064_bib0140) 2006; 89 Zhao (10.1016/j.sna.2020.112064_bib0120) 2011; 11 Faa (10.1016/j.sna.2020.112064_bib0105) 1994; 14 Farrell (10.1016/j.sna.2020.112064_bib0070) 2007; 43 Xi (10.1016/j.sna.2020.112064_bib0090) 2017 Fisher (10.1016/j.sna.2020.112064_bib0050) 2007 Villeneuve (10.1016/j.sna.2020.112064_bib0100) 1996; 25 Lu (10.1016/j.sna.2020.112064_bib0150) 2010; 96 Ramesh (10.1016/j.sna.2020.112064_bib0005) 2007; 6 Li (10.1016/j.sna.2020.112064_bib0030) 2013; 22 Gillette (10.1016/j.sna.2020.112064_bib0020) 2011; 2 Qu (10.1016/j.sna.2020.112064_bib0045) 2016; 108 Lu (10.1016/j.sna.2020.112064_bib0125) 2001; 78 Vileneuve (10.1016/j.sna.2020.112064_bib0055) 1996; 25 Li (10.1016/j.sna.2020.112064_bib0115) 2010; 46 Zhao (10.1016/j.sna.2020.112064_bib0130) 2011 Avrin (10.1016/j.sna.2020.112064_bib0075) 2007; 28 Li (10.1016/j.sna.2020.112064_bib0015) 2010; 46 Nan (10.1016/j.sna.2020.112064_bib0025) 2008; 103 Freeman (10.1016/j.sna.2020.112064_bib0040) 2018; 8 Fischer (10.1016/j.sna.2020.112064_bib0060) 2009; 2009 Lu (10.1016/j.sna.2020.112064_bib0035) 2015; 106 Farrell (10.1016/j.sna.2020.112064_bib0065) 2007; 43 Fang (10.1016/j.sna.2020.112064_bib0145) 2009; 95 Xi (10.1016/j.sna.2020.112064_bib0085) 2016; 6 Xi (10.1016/j.sna.2020.112064_bib0155) 2019 Drljaca (10.1016/j.sna.2020.112064_bib0135) 2002; 97 Lal (10.1016/j.sna.2020.112064_bib0080) 2018; 132 Ambu (10.1016/j.sna.2020.112064_bib0110) 1995; 23 |
References_xml | – start-page: 529 year: 2007 ident: bib0050 article-title: Liver Iron Susceptometry in Magnetism in Medicine: A Handbook – volume: 2 year: 2011 ident: bib0020 publication-title: IEEE Magn. Lett. – volume: 132 year: 2018 ident: bib0080 publication-title: Blood – year: 2011 ident: bib0130 article-title: Ph.D. thesis, The Pennsylvania State University – volume: 6 start-page: 21 year: 2007 ident: bib0005 publication-title: Nature Mater – volume: 78 start-page: 3109 year: 2001 ident: bib0125 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 172 year: 1996 end-page: 177 ident: bib0100 article-title: Variability in hepatic iron concentration measurement from needle-biopsy specimens publication-title: J. Hepatol. – volume: 97 start-page: 10 year: 2002 ident: bib0135 publication-title: Sens. Actuators A Phys. – volume: 11 start-page: 2260 year: 2011 ident: bib0120 publication-title: IEEE Sensors J. – volume: 22 start-page: 71 year: 2013 ident: bib0030 publication-title: J. Microelectromech. Syst. – volume: 106 start-page: 112905 year: 2015 ident: bib0035 publication-title: Appl. Phys. Lett. – volume: 43 start-page: 4030 year: 2007 ident: bib0065 publication-title: IEEE Trans. Magn. – volume: 95 start-page: 112903 year: 2009 ident: bib0010 publication-title: Appl. Phys. Lett. – volume: 108 start-page: 242412 year: 2016 ident: bib0045 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 172 year: 1996 ident: bib0055 publication-title: J. Hepatol. – volume: 46 start-page: 1132 year: 2010 ident: bib0015 publication-title: Electron. Lett. – volume: 28 year: 2007 ident: bib0075 publication-title: Physiol. Meas. – start-page: 1 year: 2017 end-page: 3 ident: bib0090 article-title: 2016 IEEE Sensor – volume: 95 start-page: 112903 year: 2009 ident: bib0145 publication-title: Appl. Phys. Lett. – volume: 43 start-page: 3543 year: 2007 ident: bib0070 publication-title: IEEE Trans. Magn. – volume: 2009 start-page: 215 year: 2009 ident: bib0060 publication-title: Hematology – year: 2019 ident: bib0155 article-title: Ph. D. Thesis, The Penn State University – volume: 103 start-page: 031101 year: 2008 ident: bib0025 publication-title: J. Appl. Phys. – volume: 6 start-page: 29740 year: 2016 ident: bib0085 publication-title: Sci. Rep. – volume: 8 start-page: 065214 year: 2018 ident: bib0040 publication-title: AIP Adv. – volume: 14 start-page: 193 year: 1994 end-page: 199 ident: bib0105 article-title: Iron concentration and distribution in the newborn liver publication-title: Liver – volume: 23 start-page: 544 year: 1995 end-page: 549 ident: bib0110 article-title: Uneven hepatic iron and phosphorus distribution in beta-thalassemia publication-title: J. Hepatol. – volume: 1 start-page: e10004 year: 2018 ident: bib0095 publication-title: Med. Devices. Sens. – volume: 96 start-page: 102902 year: 2010 ident: bib0150 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 1132 year: 2010 ident: bib0115 publication-title: Electron. Lett. – volume: 89 start-page: 252904 year: 2006 ident: bib0140 publication-title: Appl. Phys. Lett. – volume: 28 year: 2007 ident: 10.1016/j.sna.2020.112064_bib0075 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/28/4/002 – volume: 14 start-page: 193 issue: 4 year: 1994 ident: 10.1016/j.sna.2020.112064_bib0105 article-title: Iron concentration and distribution in the newborn liver publication-title: Liver doi: 10.1111/j.1600-0676.1994.tb00073.x – volume: 108 start-page: 242412 year: 2016 ident: 10.1016/j.sna.2020.112064_bib0045 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954043 – volume: 6 start-page: 29740 year: 2016 ident: 10.1016/j.sna.2020.112064_bib0085 publication-title: Sci. Rep. doi: 10.1038/srep29740 – volume: 25 start-page: 172 issue: 2 year: 1996 ident: 10.1016/j.sna.2020.112064_bib0100 article-title: Variability in hepatic iron concentration measurement from needle-biopsy specimens publication-title: J. Hepatol. doi: 10.1016/S0168-8278(96)80070-5 – volume: 25 start-page: 172 year: 1996 ident: 10.1016/j.sna.2020.112064_bib0055 publication-title: J. Hepatol. doi: 10.1016/S0168-8278(96)80070-5 – year: 2011 ident: 10.1016/j.sna.2020.112064_bib0130 – start-page: 1 year: 2017 ident: 10.1016/j.sna.2020.112064_bib0090 – volume: 2009 start-page: 215 year: 2009 ident: 10.1016/j.sna.2020.112064_bib0060 publication-title: Hematology doi: 10.1182/asheducation-2009.1.215 – volume: 43 start-page: 4030 year: 2007 ident: 10.1016/j.sna.2020.112064_bib0065 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2007.904839 – volume: 1 start-page: e10004 year: 2018 ident: 10.1016/j.sna.2020.112064_bib0095 publication-title: Med. Devices. Sens. doi: 10.1002/mds3.10004 – volume: 97 start-page: 10 year: 2002 ident: 10.1016/j.sna.2020.112064_bib0135 publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(01)00866-4 – volume: 43 start-page: 3543 year: 2007 ident: 10.1016/j.sna.2020.112064_bib0070 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2007.901352 – volume: 103 start-page: 031101 year: 2008 ident: 10.1016/j.sna.2020.112064_bib0025 publication-title: J. Appl. Phys. doi: 10.1063/1.2836410 – volume: 95 start-page: 112903 year: 2009 ident: 10.1016/j.sna.2020.112064_bib0145 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3231614 – volume: 46 start-page: 1132 year: 2010 ident: 10.1016/j.sna.2020.112064_bib0015 publication-title: Electron. Lett. doi: 10.1049/el.2010.1336 – volume: 106 start-page: 112905 year: 2015 ident: 10.1016/j.sna.2020.112064_bib0035 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4915610 – volume: 46 start-page: 1132 year: 2010 ident: 10.1016/j.sna.2020.112064_bib0115 publication-title: Electron. Lett. doi: 10.1049/el.2010.1336 – volume: 11 start-page: 2260 year: 2011 ident: 10.1016/j.sna.2020.112064_bib0120 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2011.2154325 – year: 2019 ident: 10.1016/j.sna.2020.112064_bib0155 – volume: 96 start-page: 102902 year: 2010 ident: 10.1016/j.sna.2020.112064_bib0150 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3358133 – volume: 8 start-page: 065214 year: 2018 ident: 10.1016/j.sna.2020.112064_bib0040 publication-title: AIP Adv. doi: 10.1063/1.5030460 – volume: 78 start-page: 3109 year: 2001 ident: 10.1016/j.sna.2020.112064_bib0125 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1372360 – volume: 95 start-page: 112903 year: 2009 ident: 10.1016/j.sna.2020.112064_bib0010 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3231614 – volume: 132 year: 2018 ident: 10.1016/j.sna.2020.112064_bib0080 publication-title: Blood – volume: 22 start-page: 71 year: 2013 ident: 10.1016/j.sna.2020.112064_bib0030 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2012.2215012 – start-page: 529 year: 2007 ident: 10.1016/j.sna.2020.112064_bib0050 – volume: 2 year: 2011 ident: 10.1016/j.sna.2020.112064_bib0020 publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2011.2151178 – volume: 89 start-page: 252904 year: 2006 ident: 10.1016/j.sna.2020.112064_bib0140 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2420772 – volume: 23 start-page: 544 issue: 5 year: 1995 ident: 10.1016/j.sna.2020.112064_bib0110 article-title: Uneven hepatic iron and phosphorus distribution in beta-thalassemia publication-title: J. Hepatol. doi: 10.1016/0168-8278(95)80060-3 – volume: 6 start-page: 21 year: 2007 ident: 10.1016/j.sna.2020.112064_bib0005 publication-title: Nature Mater doi: 10.1038/nmat1805 |
SSID | ssj0003377 |
Score | 2.3514633 |
Snippet | [Display omitted]
Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with... Noninvasive measurement of liver iron concentration (LIC) is clinically important. Yet, at the present time, it can only be achieved with SQUID technology.... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112064 |
SubjectTerms | Feasibility Iron Liver Low temperature physics Magnetic fields Magnetic shielding Magnetoelectric, Sensor, SQUID, Piezoelectric, Composites, Iron concentration, Non-invasive, Array, Magnetics, Simulation, Measurement, Biomagnetics, Biomedical sensor, Iron overload Mapping Organs Room temperature Sensor arrays Sensors Single crystals |
Title | Room temperature magnetoelectric sensor arrays for application of detecting iron profiles in organs |
URI | https://dx.doi.org/10.1016/j.sna.2020.112064 https://www.proquest.com/docview/2447573091 https://www.proquest.com/docview/2423802153 https://pubmed.ncbi.nlm.nih.gov/PMC7357878 |
Volume | 311 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QUOFZ9iS1sZiRNS2MTOxtljVVEtIPUAVOrNcuwxBEFSbbaHXvrbmUmcZffQHrglsSeyxs7Mc2b8BuAdEgQorAqJstInuUpdskhllagckQC68yH02RYXxfIy_3w1v9qDs_EsDKdVRts_2PTeWscns6jN2XVdz76ltHXIJRlXgiCplmSH9yV5-3IC-6efviwvNgZZqb4AI_dPWGAMbvZpXl3D7EOyP0uTFvl97mkLfu4mT255o_OncBBhpDgdRvoM9rB5Dk-2yAVfgPtKmFgw9VTkTRZ_7I8G1-1Q-aZ2oqMtbLsSdrWyt50IfPkvnC3aIDxyiIHeJvgwnIj1vTtRUyuf4exewuX5x-9nyySWVEgcIaV14qtF5tF562ymtZNos0KrKkWV2dTLYB3zz1mdu8r7eVmgtYo5wUoyieTutHoFk6Zt8DUI67EM0ldeeeQ6ZlXuQqlJADE4r_0U0lGTxkW-cS578duMiWW_DCnfsPLNoPwpvN-IXA9kGw91zsfpMTsrxpAzeEjsaJxKEz_XzkimPSRbt8im8HbTTB8aR09sg-0N9yF0wwhJTUHvLIHNWJmqe7elqX_2lN2aSYV0efh_Y34Dj_mOf2Vn8yOYrFc3eExYaF2dwKMPd9lJXPF_AZUlDUg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V20PpAUEBdaGAK3FCijaxvXH2WFVUW9ruAVqpN8vxRxsESbXZHvj3zCTOsnugB25Rxo6ssT3znBm_AfjkEQLkRoREGO4SKVKbzFJeJkJ6jwDduhC6bItFPr-RX2-ntztwOtyFobTKaPt7m95Z6_hmErU5eaiqyfcUjw6So3FFCJIqjnZ4V1JR6xHsnpxfzBdrgyxEV4CR2ifUYQhudmlebU3sQ7y7S5Pm8l_uaQN-bidPbnijsxfwPMJIdtKP9CXs-PoA9jfIBV-B_YaYmBH1VORNZr_MXe1XTV_5prKsxSNss2RmuTS_Wxbo8W84mzWBOU8hBvwao8twLNb3blmFUrrD2b6Gm7Mv16fzJJZUSCwipVXiylnmvHXGmkwpy73JciXK1IvMpI4HY4l_zihpS-emRe6NEcQJVqBJRHenxBsY1U3tD4EZ54vAXemE81THrJQ2FAo7eB-sU24M6aBJbSPfOJW9-KmHxLIfGpWvSfm6V_4YPq-7PPRkG081lsP06K0Vo9EZPNXtaJhKHbdrqznRHqKtm2VjOF6LcaNR9MTUvnmkNohuCCGJMaitJbAeK1F1b0vq6r6j7FZEKqSKt_835o-wN7--utSX54uLd_CMJPRbO5sewWi1fPTvERetyg9x3f8B640PLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room+Temperature+Magnetoelectric+Sensor+Arrays+For+Application+of+Detecting+Iron+Profiles+in+Organs&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Xi%2C+Hao&rft.au=Lu%2C+Meng-Chien&rft.au=Yang%2C+Qing+X.&rft.au=Zhang%2C+Q.+M.&rft.date=2020-08-15&rft.issn=0924-4247&rft.volume=311&rft_id=info:doi/10.1016%2Fj.sna.2020.112064&rft_id=info%3Apmid%2F32661455&rft.externalDocID=PMC7357878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |