Nonstationary warm spell frequency analysis integrating climate variability and change with application to the Middle East

The Middle East can experience extended wintertime spells of exceptionally hot weather, which can result in prolonged droughts and have major impacts on the already scarce water resources of the region. Recent observational studies point at increasing trends in mean and extreme temperatures in the M...

Full description

Saved in:
Bibliographic Details
Published inClimate dynamics Vol. 53; no. 9-10; pp. 5329 - 5347
Main Authors Ouarda, Taha B. M. J., Charron, Christian, Kumar, Kondapalli Niranjan, Phanikumar, Devulapalli Venkata, Molini, Annalisa, Basha, Ghouse
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0930-7575
1432-0894
DOI10.1007/s00382-019-04866-2

Cover

More Information
Summary:The Middle East can experience extended wintertime spells of exceptionally hot weather, which can result in prolonged droughts and have major impacts on the already scarce water resources of the region. Recent observational studies point at increasing trends in mean and extreme temperatures in the Middle East, while climate projections seem to indicate that, in a warming weather scenario, the frequency, intensity and duration of warm spells will increase. The nonstationary warm spell frequency analysis approach proposed herein allows considering both climate variability through global climatic oscillations and climate change signals. In this study, statistical distributions with parameters conditional on covariates representing time, to account for temporal trend, and climate indices are used to predict the frequency, duration and intensity of wintertime warm spells in the Middle East. Such models could find a large applicability in various fields of climate research, and in particular in the seasonal prediction of warm spell severity. Based on previous studies linking atmospheric circulation patterns in the Atlantic to extreme temperatures in the Middle East, we use as covariates two classic modes of ‘fast’ and ‘slow’ climatic variability in the Atlantic Ocean (i.e., the Northern Atlantic Oscillation and the Atlantic Multidecadal Oscillation respectively). Results indicate that the use of covariates improves the goodness-of-fit of models for all warm spell characteristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-019-04866-2