Predicting gait events from tibial acceleration in rearfoot running: A structured machine learning approach

•Existing work relies on hand-crafted features to identify running gait event timings.•Machine learning methods are less affected by variation within the data.•Gait event detection can be formalized as a structured machine learning problem.•Machine learning can accurately estimate running gait event...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 84; no. NA; pp. 87 - 92
Main Authors Robberechts, Pieter, Derie, Rud, Van den Berghe, Pieter, Gerlo, Joeri, De Clercq, Dirk, Segers, Veerle, Davis, Jesse
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text
ISSN0966-6362
1879-2219
1879-2219
DOI10.1016/j.gaitpost.2020.10.035

Cover

More Information
Summary:•Existing work relies on hand-crafted features to identify running gait event timings.•Machine learning methods are less affected by variation within the data.•Gait event detection can be formalized as a structured machine learning problem.•Machine learning can accurately estimate running gait event timings in real time. Gait event detection of the initial contact and toe off is essential for running gait analysis, allowing the derivation of parameters such as stance time. Heuristic-based methods exist to estimate these key gait events from tibial accelerometry. However, these methods are tailored to very specific acceleration profiles, which may offer complications when dealing with larger data sets and inherent biological variability. Can a structured machine learning approach achieve a more accurate prediction of running gait event timings from tibial accelerometry, compared to the previously utilised heuristic approaches? Force-based event detection acted as the criterion measure in order to assess the accuracy, repeatability and sensitivity of the predicted gait events. 3D tibial acceleration and ground reaction force data from 93 rearfoot runners were captured. A heuristic method and two structured machine learning methods were employed to derive initial contact, toe off and stance time from tibial acceleration signals. Both a structured perceptron model (median absolute error of stance time estimation: 10.00 ± 8.73 ms) and a structured recurrent neural network model (median absolute error of stance time estimation: 6.50 ± 5.74 ms) significantly outperformed the existing heuristic approach (median absolute error of stance time estimation: 11.25 ± 9.52 ms). Thus, results indicate that a structured recurrent neural network machine learning model offers the most accurate and consistent estimation of the gait events and its derived stance time during level overground running. The machine learning methods seem less affected by intra- and inter-subject variation within the data, allowing for accurate and efficient automated data output during rearfoot overground running. Furthermore offering possibilities for real-time monitoring and biofeedback during prolonged measurements, even outside the laboratory.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0966-6362
1879-2219
1879-2219
DOI:10.1016/j.gaitpost.2020.10.035