Enhanced frontal activation underlies sparing from the attentional blink: Evidence from human electrophysiology
Using the ERP method, we examined the processing operations elicited by stimuli that appear within the same temporal attention window. Forty subjects searched for letter targets among digit distractors displayed in rapid serial visual presentation (RSVP). ERPs were examined under conditions where a...
Saved in:
Published in | Psychophysiology Vol. 53; no. 5; pp. 623 - 633 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-5772 1469-8986 1469-8986 1540-5958 |
DOI | 10.1111/psyp.12618 |
Cover
Abstract | Using the ERP method, we examined the processing operations elicited by stimuli that appear within the same temporal attention window. Forty subjects searched for letter targets among digit distractors displayed in rapid serial visual presentation (RSVP). ERPs were examined under conditions where a single target was embedded among distractors and compared to those recorded when two consecutive targets were embedded among distractors. Standard and independent component analyses revealed two temporally and topographically distinct ERP responses, a midfrontal P3a component peaking at about 300 ms followed by a midparietal P3b component peaking at about 450 ms. With minimal latency variations, the frontal P3a was amplified when elicited by two consecutive targets relative to a single target. The parietal P3b response was also amplified when elicited by two consecutive targets compared to a single target but, in contrast to P3a, it was also associated with a substantially longer time course. These results provide evidence for the involvement of frontal brain regions in the close‐to‐concurrent selection of two consecutive targets displayed in RSVP, and of posterior brain regions in the serial encoding of targets in visual working memory. The present findings are discussed in relation to current models of temporal gating of attention and the attentional blink effect. |
---|---|
AbstractList | Using the ERP method, we examined the processing operations elicited by stimuli that appear within the same temporal attention window. Forty subjects searched for letter targets among digit distractors displayed in rapid serial visual presentation (RSVP). ERPs were examined under conditions where a single target was embedded among distractors and compared to those recorded when two consecutive targets were embedded among distractors. Standard and independent component analyses revealed two temporally and topographically distinct ERP responses, a midfrontal P3a component peaking at about 300 ms followed by a midparietal P3b component peaking at about 450 ms. With minimal latency variations, the frontal P3a was amplified when elicited by two consecutive targets relative to a single target. The parietal P3b response was also amplified when elicited by two consecutive targets compared to a single target but, in contrast to P3a, it was also associated with a substantially longer time course. These results provide evidence for the involvement of frontal brain regions in the close-to-concurrent selection of two consecutive targets displayed in RSVP, and of posterior brain regions in the serial encoding of targets in visual working memory. The present findings are discussed in relation to current models of temporal gating of attention and the attentional blink effect. Using the ERP method, we examined the processing operations elicited by stimuli that appear within the same temporal attention window. Forty subjects searched for letter targets among digit distractors displayed in rapid serial visual presentation (RSVP). ERPs were examined under conditions where a single target was embedded among distractors and compared to those recorded when two consecutive targets were embedded among distractors. Standard and independent component analyses revealed two temporally and topographically distinct ERP responses, a midfrontal P3a component peaking at about 300 ms followed by a midparietal P3b component peaking at about 450 ms. With minimal latency variations, the frontal P3a was amplified when elicited by two consecutive targets relative to a single target. The parietal P3b response was also amplified when elicited by two consecutive targets compared to a single target but, in contrast to P3a, it was also associated with a substantially longer time course. These results provide evidence for the involvement of frontal brain regions in the close-to-concurrent selection of two consecutive targets displayed in RSVP, and of posterior brain regions in the serial encoding of targets in visual working memory. The present findings are discussed in relation to current models of temporal gating of attention and the attentional blink effect.Using the ERP method, we examined the processing operations elicited by stimuli that appear within the same temporal attention window. Forty subjects searched for letter targets among digit distractors displayed in rapid serial visual presentation (RSVP). ERPs were examined under conditions where a single target was embedded among distractors and compared to those recorded when two consecutive targets were embedded among distractors. Standard and independent component analyses revealed two temporally and topographically distinct ERP responses, a midfrontal P3a component peaking at about 300 ms followed by a midparietal P3b component peaking at about 450 ms. With minimal latency variations, the frontal P3a was amplified when elicited by two consecutive targets relative to a single target. The parietal P3b response was also amplified when elicited by two consecutive targets compared to a single target but, in contrast to P3a, it was also associated with a substantially longer time course. These results provide evidence for the involvement of frontal brain regions in the close-to-concurrent selection of two consecutive targets displayed in RSVP, and of posterior brain regions in the serial encoding of targets in visual working memory. The present findings are discussed in relation to current models of temporal gating of attention and the attentional blink effect. |
Author | Dux, Paul E. Dell'Acqua, Roberto Jolicœur, Pierre Losier, Talia Doro, Mattia |
Author_xml | – sequence: 1 givenname: Roberto surname: Dell'Acqua fullname: Dell'Acqua, Roberto email: dar@unipd.it organization: Cognitive Neuroscience Center, University of Padova, Padova, Italy – sequence: 2 givenname: Mattia surname: Doro fullname: Doro, Mattia organization: Department of Developmental Psychology, University of Padova, Padova, Italy – sequence: 3 givenname: Paul E. surname: Dux fullname: Dux, Paul E. organization: School of Psychology, The University of Queensland, St. Lucia, Australia – sequence: 4 givenname: Talia surname: Losier fullname: Losier, Talia organization: Department of Psychology, Université de Montréal, Québec, Montréal, Canada – sequence: 5 givenname: Pierre surname: Jolicœur fullname: Jolicœur, Pierre organization: Department of Psychology, Université de Montréal, Québec, Montréal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26790988$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U9rFDEYBvAgFbtdvfgBZMCLCFPzd5LxVsq2VWpdUVFPITvJdNPOJmOSqZ1vb7bT9lCkmEsI_J4X8j57YMd5ZwB4ieA-yuddH8d-H-EKiSdghmhVl6IW1Q6YQUhFyTjHu2AvxgsIYY0wfgZ2ccVrWAsxA37h1so1Rhdt8C6prlBNslcqWe-KwWkTOmtiEXsVrDvfok2R1qZQKRm3RTmx6qy7fF8srqw2edSE1sNGucJ0pknB9-sxWt_58_E5eNqqLpoXt_ccfD9afDs8KU8_H384PDgtG8oqUXKuMKpqjgnRWLC2xYRDreuGNpRr2piWCaOM0YyxVhCl8mOlKVH5ixpRRebgzTS3D_73YGKSGxsb03XKGT9EibjgdU0hgv9DsSAZ4kxfP6AXfgh5B1nVkDFBKgwfVVwgTgnNcg5e3aphtTFa9sFuVBjlXTcZvJ1AE3yMwbT3BEG5LV5ui5c3xWcMH-DGppsWU1C2-3cETZE_tjPjI8Pl8uuv5V2mnDI2JnN9n1HhUlaccCZ_nB3L5afq7OjLRyZ_kr9RddBg |
CitedBy_id | crossref_primary_10_3390_sym13071208 crossref_primary_10_1177_2041669519830103 crossref_primary_10_3758_s13415_017_0499_7 crossref_primary_10_1111_psyp_13745 crossref_primary_10_1016_j_ijpsycho_2020_06_004 crossref_primary_10_1162_jocn_a_01175 crossref_primary_10_1016_j_jecp_2017_06_013 crossref_primary_10_1016_j_actpsy_2016_04_009 crossref_primary_10_1016_j_neuroimage_2021_117789 crossref_primary_10_1111_psyp_14280 crossref_primary_10_1111_desc_12512 crossref_primary_10_1016_j_concog_2017_04_005 crossref_primary_10_3758_s13414_024_02873_y crossref_primary_10_3998_ergo_3587 crossref_primary_10_31083_j_jin2305088 |
Cites_doi | 10.1162/089892904323057317 10.1038/42940 10.1037/a0027610 10.1111/psyp.12210 10.1038/nrn1052 10.1017/S0048577299971135 10.3758/APP.71.8.1683 10.1111/j.1469-8986.2007.00618.x 10.3758/s13423-011-0209-3 10.1016/j.clinph.2007.04.019 10.1016/j.brainres.2006.12.066 10.1038/nn921 10.3758/PBR.15.4.809 10.1097/00001756-200210280-00011 10.1111/j.1469-8986.2010.01033.x 10.1073/pnas.95.3.831 10.1016/j.bandc.2004.03.006 10.1016/j.neubiorev.2009.12.005 10.1162/jocn.2006.18.9.1423 10.1017/S0140525X00058015 10.1038/385154a0 10.1016/S0166-2236(00)01657-X 10.3758/s13414-010-0004-7 10.1038/nature04262 10.1006/cogp.1998.0684 10.2307/2346101 10.1162/jocn.2009.21036 10.1016/0042-6989(89)90144-2 10.1016/S0926-6410(03)00092-2 10.3758/BF03196329 10.1037/0278-7393.2.5.509 10.1016/j.tics.2005.04.010 10.1037/0033-295X.93.2.180 10.1038/nature02466 10.1162/jocn.2006.18.10.1734 10.1016/j.jneumeth.2003.10.009 10.1037/a0013555 10.1111/j.1469-8986.2012.01380.x 10.1037/0096-1523.18.3.849 10.1111/j.1469-8986.2006.00411.x 10.1126/science.174.4006.307 10.3758/BF03193788 10.1037/a0013395 10.1037/a0023612 10.1371/journal.pone.0003967 10.1016/S0896-6273(04)00012-1 10.1016/j.neuroimage.2005.02.020 10.1111/1469-8986.3850816 10.1016/S0278-2626(03)00134-9 10.1097/WNR.0b013e32830fe4e8 10.1037/a0033949 10.1037/0096-3445.129.4.481 10.1111/j.1469-8986.2008.00677.x 10.1162/jocn.2011.21621 10.1111/psyp.12435 10.1111/j.1469-8986.2004.00193.x 10.1037/0278-7393.24.4.979 10.1111/j.1469-8986.2009.00934.x 10.1162/jocn_a_00752 10.1037/0033-295X.114.1.38 10.1037/0096-1523.21.1.109 10.1016/S0896-6273(00)00104-5 10.1007/978-1-4615-0294-4_5 10.1111/1469-8986.3720163 10.1016/j.neuroimage.2004.09.024 10.1037/0096-1523.24.6.1656 10.1111/psyp.12204 10.1016/j.cogpsych.2008.12.002 10.1080/02724980443000647 |
ContentType | Journal Article |
Copyright | 2016 Society for Psychophysiological Research 2016 Society for Psychophysiological Research. |
Copyright_xml | – notice: 2016 Society for Psychophysiological Research – notice: 2016 Society for Psychophysiological Research. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
DOI | 10.1111/psyp.12618 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-8986 1540-5958 |
EndPage | 633 |
ExternalDocumentID | 4026818341 26790988 10_1111_psyp_12618 PSYP12618 ark_67375_WNG_PM6NFQJ5_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NEURAT funderid: STPD11B8HM |
GroupedDBID | --- --Z -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 186 1OB 1OC 29P 2QV 31~ 33P 36B 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHQN AAIPD AAMMB AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABGDZ ABITZ ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABVKB ABXGK ACAHQ ACBKW ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACMXC ACNCT ACPOU ACPRK ACQPF ACRPL ACSCC ACUHS ACWUS ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFWVQ AFZJQ AGHNM AGQPQ AGXDD AHBTC AHEFC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DXH EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA HAOEW HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NEJ NF~ O66 O9- OHT OIG OVD P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ SV3 TEORI TN5 TUS UAP UB1 V8K W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WQZ WSUWO WXI WXSBR X7M XG1 XJT XOL XSW YNT YYM YYP YZZ ZCA ZGI ZWS ZXP ZZTAW ~IA ~WP AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM RIG 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c4568-77a21697233d285ff2370dd9c4c47d4cef58eaeed555f83aaeaebd43a009d14a3 |
IEDL.DBID | DR2 |
ISSN | 0048-5772 1469-8986 |
IngestDate | Fri Sep 05 08:37:46 EDT 2025 Fri Sep 05 04:57:58 EDT 2025 Fri Jul 25 19:18:15 EDT 2025 Fri Jul 25 09:46:32 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 Wed Oct 01 02:30:28 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Thu Sep 25 07:36:29 EDT 2025 Sun Sep 21 06:19:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Attentional blink P3 component Event-related potentials Frontoparietal neural circuit Independent component analysis (ICA) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Society for Psychophysiological Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4568-77a21697233d285ff2370dd9c4c47d4cef58eaeed555f83aaeaebd43a009d14a3 |
Notes | ark:/67375/WNG-PM6NFQJ5-X ArticleID:PSYP12618 NEURAT - No. STPD11B8HM istex:62FFD37CACE43B24339436983D30D1E24B1C978F This research was supported by Grant NEURAT STPD11B8HM awarded to RD'A. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26790988 |
PQID | 1781743458 |
PQPubID | 41359 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1787994010 proquest_miscellaneous_1782831032 proquest_journals_1905583620 proquest_journals_1781743458 pubmed_primary_26790988 crossref_primary_10_1111_psyp_12618 crossref_citationtrail_10_1111_psyp_12618 wiley_primary_10_1111_psyp_12618_PSYP12618 istex_primary_ark_67375_WNG_PM6NFQJ5_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05 May 2016 2016-05-00 2016-May 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Psychophysiology |
PublicationTitleAlternate | Psychophysiol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Craston, P., Wyble, B., Chennu, S., & Bowman, H. (2009). The attentional blink reveals serial working memory encoding: Evidence from virtual and human event-related potentials. Journal of Cognitive Neuroscience, 21, 550-566. doi: 10.1162/jocn.2009.21036 Kessler, K., Schmitz, F., Gross, J., Hommel, B., Shapiro, K., & Schnitzler, A. (2005). Target consolidation under high temporal processing demands as revealed by MEG. NeuroImage, 26, 1030-1041. doi: 10.1016/j.neuroimage.2005.02.020 Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5, 995-1002. doi: 10.1038/nn921 Dien, J., Spencer, K. M., & Donchin, E. (2004). Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology, 41, 665-678. doi: 10.1111/j.1469-8986.2004.00193.x Akyürek, E. G., Leszczyński, M., & Schubö, A. (2010). The temporal locus of the interaction between working memory consolidation and the attentional blink. Psychophysiology, 47, 1134-1141. doi: 10.1111/j.1469-8986.2010.01033.x Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289-300. doi: 10.2307/2346101 Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proceedings of the National Academy of Sciences (USA), 95, 831-838. doi: 10.1073/pnas.95.3.831 Marois, R., Yi, D. J., & Chun, M. M. (2004). The neural fate of consciously perceived and missed events in the attentional blink. Neuron, 41, 465-472. doi: 10.1016/S0896-6273(04)00012-1 Kranczioch, C., Debener, S., & Engel, A. K. (2003). Event-related brain potential correlates of the attentional blink phenomenon. Cognitive Brain Research, 17, 177-187. doi: 10.1016/S0926-6410(03)00092-2 Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109-127. doi: 10.1037/0096-1523.21.1.109 Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model of temporal attention and working memory. Psychological Review, 114, 38-70. doi: 10.1037/0033-295X.114.1.38 Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163-178. doi: 10.1111/1469-8986.3720163 Prada, L., Barceló, F., Herrmann, C. S., & Escera, C. (2014). EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task-switch cues. Psychophysiology, 51, 658-672. doi: 10.1111/psyp.12210 Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24, 1656-1674. doi: 10.1037/0096-1523.24.6.1656 Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148. doi: 10.1016/j.clinph.2007.04.019 Kranczioch, C., Debener, S., Schwarzbach, J., Goebel, R., & Engel, A. K. (2005). Neural correlates of conscious perception in the attentional blink. NeuroImage, 24, 704-714. doi: 10.1016/j.neuroimage.2004.09.024 Sperling, G., Budiansky, J., Spivak, J. G., & Johnson, M. C. (1971). Extremely rapid visual search: The maximum rate of scanning letters for the presence of a numeral. Science, 174, 307-311. doi: 10.1126/science.174.4006.307 Dell'Acqua, R., Dux, P. E., Wyble, B., & Jolicœur, P. (2012). Sparing from the attentional blink is not spared from structural limitations. Psychonomic Bulletin & Review, 19, 232-238. doi: 10.3758/s13423-011-0209-3 Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34, 947-957. doi: 10.1016/j.neubiorev.2009.12.005 Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509-522. doi: 10.1037/0278-7393.2.5.509 Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816-827. doi: 10.1111/1469-8986.3850816 Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860. doi: 10.1037/0096-1523.18.3.849 Dux, P. E., Wyble, B., Jolicœur, P., & Dell'Acqua, R. (2014). On the costs of lag-1 sparing. Journal of Experimental Psychology: Human Perception and Performance, 40, 416-428. doi: 10.1037/a0033949 Hommel, B., & Akyürek, E. G. (2005). Lag-1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode. Quarterly Journal of Experimental Psychology, 58A, 1415-1433. doi: 10.1080/02724980443000647 Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91-95. doi: 10.1038/nature04262 Wyble, B., Potter, M. C., Bowman, H., & Nieuwenstein, M. (2011). Attentional episodes in visual perception. Journal of Experimental Psychology: General, 140, 488-505. doi: 10.1037/a0023612 Olivers, C. N. L., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836-863. doi: 10.1037/a0013395 Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71, 1683-1700. doi: 10.3758/APP.71.8.1683 Ptito, A., Arnell, K. M., Jolicœur, P., & MacLeod, J. (2008). Intramodal and crossmodal processing delays in the attentional blink paradigm revealed by event-related potentials. Psychophysiology, 45, 794-803. doi: 10.1111/j.1469-8986.2008.00677.x Sessa, P., Luria, R., Verleger, R., & Dell'Acqua, R. (2007). P3 latency shifts in the attentional blink: Further evidence for second target processing postponement. Brain Research, 1137, 131-139. doi: 10.1016/j.brainres.2006.12.066 Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience, 4, 193-202. doi: 10.1038/nrn1052 Potter, M. C., Dell'Acqua, R., Pesciarelli, F., Job, R., Peressotti, F., & O'Connor, D. H. (2005). Bidirectional semantic priming in the attentional blink. Psychonomic Bulletin & Review, 12, 460-465. doi: 10.3758/BF03193788 Smid, H. G. O. M., Jakob, A., & Heinze, H. J. (1999). An event-related brain potential study of visual selective attention to conjunctions of color and shape. Psychophysiology, 36, 264-279. doi: 10.1017/S0048577299971135 Olivers, C. N. L., Hilkenmeier, F., & Scharlau, I. (2011). Prior entry explains order reversals in the attentional blink. Attention, Perception, & Psychophysics, 73, 56-67. doi: 10.3758/s13414-010-0004-7 Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of the P3. Behavioral and Brain Sciences, 11, 343-427. doi: 10.1017/S0140525X00058015 Kiesel, A., Miller, J., Jolicœur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45, 250-274. doi: 10.1111/j.1469-8986.2007.00618.x Brisson, B., & Jolicœur, P. (2008). Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search. PLoS ONE, 3, e3967. doi: 10.1371/journal.pone.0003967 Husain, M., Shapiro, K., Martin, J., & Kennard, C. (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature, 385, 154-156. doi: 10.1038/385154a0 Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience, 23, 571-579. doi: 10.1016/S0166-2236(00)01657-X Marcantoni, W. S., Lepage, M., Beaudoin, G., Bourgouin, P., & Richer, F. (2003). Neural correlates of dual task interference in rapid visual streams: An fMRI study. Brain and Cognition, 53, 318-321. doi: 10.1016/S0278-2626(03)00134-9 Lagroix, H. E. P., Grubert, A., Spalek, T. M., Di Lollo, V., & Eimer, M. (2015). Visual search is postponed during the period of the AB: An event-related potential study. Psychophysiology, 52, 1031-1038. doi: 10.1111/psyp.12435 Brisson, B., & Bourassa, M. È. (2014). Masking of a first target in the attentional blink attenuates the P3 to the first target and delays the P3 to the second target. Psychophysiology, 51, 611-619. doi: 10.1111/psyp.12204 Akyürek, E. G., & Meijerink, S. K. (2012). The deployment of visual attention during temporal integration: An electrophysiological investigation. Psychophysiology, 49, 885-898. doi: 10.1111/j.1469-8986.2012.01380.x Jolicœur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202. doi: 10.1006/cogp.1998.0684 Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751-754. doi: 10.1038/nature02466 Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21. doi: 10.1016/j.jneumeth.2003.10.009 Dux, P. E., Asplund, C. L., & Marois, R. (2008). An attentional blink for sequentially presented targets: Evidence in favor of resource depletion accounts. Psychonomic Bulletin & Review, 15, 809-813. doi: 10.3758/PBR.15.4.809 Marois, R., & Ivanoff, J. (2005). Capacity limits of information proc 2002; 13 1992; 18 2012; 19 2003; 17 2008; 3 2005; 26 2003; 53 2005; 24 2004; 134 2000; 129 1997; 385 2007; 1137 2011; 73 1995; 21 1997; 387 2003; 4 2006; 440 2008; 115 2011; 23 2005; 58A 1971; 174 2014; 51 1998; 95 2009; 59 2010; 34 2004; 41 1986; 93 2009; 21 2000; 28 2002; 9 2000; 23 1995; 57 2002; 5 2008; 19 2015; 52 1976; 2 2008; 15 1988; 11 2006; 18 2012; 38 2003 2004; 428 2014; 40 1989; 29 1998; 24 2007; 114 2009; 35 2007; 118 2015; 27 2010; 47 2000; 37 2006; 43 2004; 16 2009; 71 2005; 9 2004; 56 1999; 36 2008; 45 2001; 38 2012; 49 2011; 140 2005; 12 1998; 36 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Akyürek, E. G., Eshuis, S. A. H., Nieuwenstein, M. R., Saija, J. D., Başkent, D., & Hommel, B. (2012). Temporal target integration underlies performance at lag 1 in the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 38, 1448-1464. doi: 10.1037/a0027610 – reference: Dell'Acqua, R., Dux, P. E., Wyble, B., Doro, M., Sessa, P., Meconi, F., & Jolicœur, P. (2015). The attentional blink impairs detection and delays encoding of visual information: Evidence from human electrophysiology. Journal of Cognitive Neuroscience, 27, 720-735. doi: 10.1162/jocn_a_00752 – reference: Husain, M., Shapiro, K., Martin, J., & Kennard, C. (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature, 385, 154-156. doi: 10.1038/385154a0 – reference: Kihara, K., Kawahara, J.-I., & Takeda, Y. (2008). Electrophysiological evidence for independent consolidation of multiple targets. NeuroReport, 19, 1493-1496. doi: 10.1097/WNR.0b013e32830fe4e8 – reference: Dell'Acqua, R., Sessa, P., Jolicœur, P., & Robitaille, N. (2006). Spatial attention freezes during the attentional blink. Psychophysiology, 43, 394-400. doi: 10.1111/j.1469-8986.2006.00411.x – reference: Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a preattentive visual search task. Nature, 387, 805-807. doi: 10.1038/42940 – reference: Dien, J., Spencer, K. M., & Donchin, E. (2004). Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology, 41, 665-678. doi: 10.1111/j.1469-8986.2004.00193.x – reference: Potter, M. C., Dell'Acqua, R., Pesciarelli, F., Job, R., Peressotti, F., & O'Connor, D. H. (2005). Bidirectional semantic priming in the attentional blink. Psychonomic Bulletin & Review, 12, 460-465. doi: 10.3758/BF03193788 – reference: Barceló, F., Periáñez, J. A., & Knight, R. T. (2002). Think differently: A brain orienting response to task novelty. NeuroReport, 13, 1887-1892. doi: 10.1097/00001756-200210280-00011 – reference: Potts, G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and Cognition, 56, 5-31. doi: 10.1016/j.bandc.2004.03.006 – reference: Akyürek, E. G., & Meijerink, S. K. (2012). The deployment of visual attention during temporal integration: An electrophysiological investigation. Psychophysiology, 49, 885-898. doi: 10.1111/j.1469-8986.2012.01380.x – reference: Brisson, B., & Bourassa, M. È. (2014). Masking of a first target in the attentional blink attenuates the P3 to the first target and delays the P3 to the second target. Psychophysiology, 51, 611-619. doi: 10.1111/psyp.12204 – reference: Olivers, C. N. L., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836-863. doi: 10.1037/a0013395 – reference: Wyble, B., Potter, M. C., Bowman, H., & Nieuwenstein, M. (2011). Attentional episodes in visual perception. Journal of Experimental Psychology: General, 140, 488-505. doi: 10.1037/a0023612 – reference: Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model of temporal attention and working memory. Psychological Review, 114, 38-70. doi: 10.1037/0033-295X.114.1.38 – reference: Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink. Neuron, 28, 299-308. doi: 10.1016/S0896-6273(00)00104-5 – reference: Taatgen, N. A., Juvina, I., Schipper, M., Borst, J. P., & Martens, S. (2009). Too much control can hurt: A threaded cognition model of the attentional blink. Cognitive Psychology, 59, 1-29. doi: 10.1016/j.cogpsych.2008.12.002 – reference: Lagroix, H. E. P., Grubert, A., Spalek, T. M., Di Lollo, V., & Eimer, M. (2015). Visual search is postponed during the period of the AB: An event-related potential study. Psychophysiology, 52, 1031-1038. doi: 10.1111/psyp.12435 – reference: Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289-300. doi: 10.2307/2346101 – reference: Brisson, B., & Jolicœur, P. (2008). Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search. PLoS ONE, 3, e3967. doi: 10.1371/journal.pone.0003967 – reference: Kessler, K., Schmitz, F., Gross, J., Hommel, B., Shapiro, K., & Schnitzler, A. (2005). Target consolidation under high temporal processing demands as revealed by MEG. NeuroImage, 26, 1030-1041. doi: 10.1016/j.neuroimage.2005.02.020 – reference: Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163-178. doi: 10.1111/1469-8986.3720163 – reference: Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of the P3. Behavioral and Brain Sciences, 11, 343-427. doi: 10.1017/S0140525X00058015 – reference: Niedeggen, M., Hesselman, G., Sharaie, A., Milders, M., & Blakemore, C. (2004). Probing the prerequisites for motion blindness. Journal of Cognitive Neuroscience, 16, 584-597. doi: 10.1162/089892904323057317 – reference: Prada, L., Barceló, F., Herrmann, C. S., & Escera, C. (2014). EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task-switch cues. Psychophysiology, 51, 658-672. doi: 10.1111/psyp.12210 – reference: Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109-127. doi: 10.1037/0096-1523.21.1.109 – reference: Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860. doi: 10.1037/0096-1523.18.3.849 – reference: Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proceedings of the National Academy of Sciences (USA), 95, 831-838. doi: 10.1073/pnas.95.3.831 – reference: Potter, M. C., Chun, M. M., Banks, B. S., & Muckenhoupt, M. (1998). Two attentional deficits in serial target search: The attentional blink and an amodal task-switch deficit. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 979-992. doi: 10.1037/0278-7393.24.4.979 – reference: Smulders, F. T. Y. (2010). Simplifying jackknifing of ERPs and getting more out of it: Retrieving estimates of participants' latencies. Psychophysiology, 47, 387-392. doi: 10.1111/j.1469-8986.2009.00934.x – reference: Marois, R., Yi, D. J., & Chun, M. M. (2004). The neural fate of consciously perceived and missed events in the attentional blink. Neuron, 41, 465-472. doi: 10.1016/S0896-6273(04)00012-1 – reference: Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience, 4, 193-202. doi: 10.1038/nrn1052 – reference: Kranczioch, C., Debener, S., Schwarzbach, J., Goebel, R., & Engel, A. K. (2005). Neural correlates of conscious perception in the attentional blink. NeuroImage, 24, 704-714. doi: 10.1016/j.neuroimage.2004.09.024 – reference: Barceló, F., Escera, C., Corral, M. J., & Periáñez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18, 1734-1748. doi: 10.1162/jocn.2006.18.10.1734 – reference: Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751-754. doi: 10.1038/nature02466 – reference: Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71, 1683-1700. doi: 10.3758/APP.71.8.1683 – reference: Ptito, A., Arnell, K. M., Jolicœur, P., & MacLeod, J. (2008). Intramodal and crossmodal processing delays in the attentional blink paradigm revealed by event-related potentials. Psychophysiology, 45, 794-803. doi: 10.1111/j.1469-8986.2008.00677.x – reference: Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21. doi: 10.1016/j.jneumeth.2003.10.009 – reference: Kranczioch, C., Debener, S., & Engel, A. K. (2003). Event-related brain potential correlates of the attentional blink phenomenon. Cognitive Brain Research, 17, 177-187. doi: 10.1016/S0926-6410(03)00092-2 – reference: Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience, 23, 571-579. doi: 10.1016/S0166-2236(00)01657-X – reference: Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9, 296-305. doi: 10.1016/j.tics.2005.04.010 – reference: Marcantoni, W. S., Lepage, M., Beaudoin, G., Bourgouin, P., & Richer, F. (2003). Neural correlates of dual task interference in rapid visual streams: An fMRI study. Brain and Cognition, 53, 318-321. doi: 10.1016/S0278-2626(03)00134-9 – reference: Dux, P. E., Wyble, B., Jolicœur, P., & Dell'Acqua, R. (2014). On the costs of lag-1 sparing. Journal of Experimental Psychology: Human Perception and Performance, 40, 416-428. doi: 10.1037/a0033949 – reference: Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29, 1631-1647. doi: 10.1016/0042-6989(89)90144-2 – reference: Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481-507. doi: 10.1037/0096-3445.129.4.481 – reference: Craston, P., Wyble, B., Chennu, S., & Bowman, H. (2009). The attentional blink reveals serial working memory encoding: Evidence from virtual and human event-related potentials. Journal of Cognitive Neuroscience, 21, 550-566. doi: 10.1162/jocn.2009.21036 – reference: Dell'Acqua, R., Jolicœur, P., Luria, R., & Pluchino, P. (2009). Reevaluating encoding-capacity limitations as a cause of the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 35, 338-351. doi: 10.1037/a0013555 – reference: Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148. doi: 10.1016/j.clinph.2007.04.019 – reference: Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5, 995-1002. doi: 10.1038/nn921 – reference: Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509-522. doi: 10.1037/0278-7393.2.5.509 – reference: Vogel, E. K., & Luck, S. J. (2002). Delayed working memory consolidation during the attentional blink. Psychonomic Bulletin & Review, 9, 739-743. doi: 10.3758/BF03196329 – reference: Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91-95. doi: 10.1038/nature04262 – reference: Dell'Acqua, R., Dux, P. E., Wyble, B., & Jolicœur, P. (2012). Sparing from the attentional blink is not spared from structural limitations. Psychonomic Bulletin & Review, 19, 232-238. doi: 10.3758/s13423-011-0209-3 – reference: Reeves, A., & Sperling, G. (1986). Attention gating in short-term visual memory. Psychological Review, 93, 180-206. doi: 10.1037/0033-295X.93.2.180 – reference: Dux, P. E., Asplund, C. L., & Marois, R. (2008). An attentional blink for sequentially presented targets: Evidence in favor of resource depletion accounts. Psychonomic Bulletin & Review, 15, 809-813. doi: 10.3758/PBR.15.4.809 – reference: Smid, H. G. O. M., Jakob, A., & Heinze, H. J. (1999). An event-related brain potential study of visual selective attention to conjunctions of color and shape. Psychophysiology, 36, 264-279. doi: 10.1017/S0048577299971135 – reference: Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24, 1656-1674. doi: 10.1037/0096-1523.24.6.1656 – reference: Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34, 947-957. doi: 10.1016/j.neubiorev.2009.12.005 – reference: Scalf, P. E., Dux, P. E., & Marois, R. (2011). Working memory encoding delays top-down attention to visual cortex. Journal of Cognitive Neuroscience, 23, 2593-2604. doi: 10.1162/jocn.2011.21621 – reference: Olivers, C. N. L., Hilkenmeier, F., & Scharlau, I. (2011). Prior entry explains order reversals in the attentional blink. Attention, Perception, & Psychophysics, 73, 56-67. doi: 10.3758/s13414-010-0004-7 – reference: Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816-827. doi: 10.1111/1469-8986.3850816 – reference: Hommel, B., & Akyürek, E. G. (2005). Lag-1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode. Quarterly Journal of Experimental Psychology, 58A, 1415-1433. doi: 10.1080/02724980443000647 – reference: Jolicœur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202. doi: 10.1006/cogp.1998.0684 – reference: Sperling, G., Budiansky, J., Spivak, J. G., & Johnson, M. C. (1971). Extremely rapid visual search: The maximum rate of scanning letters for the presence of a numeral. Science, 174, 307-311. doi: 10.1126/science.174.4006.307 – reference: Akyürek, E. G., Leszczyński, M., & Schubö, A. (2010). The temporal locus of the interaction between working memory consolidation and the attentional blink. Psychophysiology, 47, 1134-1141. doi: 10.1111/j.1469-8986.2010.01033.x – reference: Sessa, P., Luria, R., Verleger, R., & Dell'Acqua, R. (2007). P3 latency shifts in the attentional blink: Further evidence for second target processing postponement. Brain Research, 1137, 131-139. doi: 10.1016/j.brainres.2006.12.066 – reference: Kiesel, A., Miller, J., Jolicœur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45, 250-274. doi: 10.1111/j.1469-8986.2007.00618.x – reference: Martens, S., Munneke, J., Smid, H., & Johnson, A. (2006). Quick minds don't blink: Electrophysiological correlates of individual differences in attentional selection. Journal of Cognitive Neuroscience, 18, 1423-1438. doi: 10.1162/jocn.2006.18.9.1423 – volume: 9 start-page: 296 year: 2005 end-page: 305 article-title: Capacity limits of information processing in the brain publication-title: Trends in Cognitive Sciences – volume: 118 start-page: 2128 year: 2007 end-page: 2148 article-title: Updating P300: An integrative theory of P3a and P3b publication-title: Clinical Neurophysiology – volume: 11 start-page: 343 year: 1988 end-page: 427 article-title: Event‐related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of the P3 publication-title: Behavioral and Brain Sciences – volume: 51 start-page: 611 year: 2014 end-page: 619 article-title: Masking of a first target in the attentional blink attenuates the P3 to the first target and delays the P3 to the second target publication-title: Psychophysiology – volume: 41 start-page: 665 year: 2004 end-page: 678 article-title: Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300 publication-title: Psychophysiology – volume: 24 start-page: 1656 year: 1998 end-page: 1674 article-title: Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 17 start-page: 177 year: 2003 end-page: 187 article-title: Event‐related brain potential correlates of the attentional blink phenomenon publication-title: Cognitive Brain Research – volume: 38 start-page: 1448 year: 2012 end-page: 1464 article-title: Temporal target integration underlies performance at lag 1 in the attentional blink publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 56 start-page: 5 year: 2004 end-page: 31 article-title: An ERP index of task relevance evaluation of visual stimuli publication-title: Brain and Cognition – volume: 19 start-page: 232 year: 2012 end-page: 238 article-title: Sparing from the attentional blink is not spared from structural limitations publication-title: Psychonomic Bulletin & Review – volume: 385 start-page: 154 year: 1997 end-page: 156 article-title: Abnormal temporal dynamics of visual attention in spatial neglect patients publication-title: Nature – volume: 1137 start-page: 131 year: 2007 end-page: 139 article-title: P3 latency shifts in the attentional blink: Further evidence for second target processing postponement publication-title: Brain Research – volume: 41 start-page: 465 year: 2004 end-page: 472 article-title: The neural fate of consciously perceived and missed events in the attentional blink publication-title: Neuron – volume: 2 start-page: 509 year: 1976 end-page: 522 article-title: Short‐term conceptual memory for pictures publication-title: Journal of Experimental Psychology: Human Learning and Memory – volume: 4 start-page: 193 year: 2003 end-page: 202 article-title: Neural mechanisms for detecting and remembering novel events publication-title: Nature Reviews Neuroscience – volume: 59 start-page: 1 year: 2009 end-page: 29 article-title: Too much control can hurt: A threaded cognition model of the attentional blink publication-title: Cognitive Psychology – volume: 24 start-page: 704 year: 2005 end-page: 714 article-title: Neural correlates of conscious perception in the attentional blink publication-title: NeuroImage – volume: 23 start-page: 2593 year: 2011 end-page: 2604 article-title: Working memory encoding delays top–down attention to visual cortex publication-title: Journal of Cognitive Neuroscience – volume: 49 start-page: 885 year: 2012 end-page: 898 article-title: The deployment of visual attention during temporal integration: An electrophysiological investigation publication-title: Psychophysiology – volume: 19 start-page: 1493 year: 2008 end-page: 1496 article-title: Electrophysiological evidence for independent consolidation of multiple targets publication-title: NeuroReport – volume: 24 start-page: 979 year: 1998 end-page: 992 article-title: Two attentional deficits in serial target search: The attentional blink and an amodal task‐switch deficit publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition – volume: 53 start-page: 318 year: 2003 end-page: 321 article-title: Neural correlates of dual task interference in rapid visual streams: An fMRI study publication-title: Brain and Cognition – volume: 18 start-page: 1423 year: 2006 end-page: 1438 article-title: Quick minds don't blink: Electrophysiological correlates of individual differences in attentional selection publication-title: Journal of Cognitive Neuroscience – volume: 129 start-page: 481 year: 2000 end-page: 507 article-title: Competition for consciousness among visual events: The psychophysics of reentrant visual processes publication-title: Journal of Experimental Psychology: General – volume: 40 start-page: 416 year: 2014 end-page: 428 article-title: On the costs of lag‐1 sparing publication-title: Journal of Experimental Psychology: Human Perception and Performance – start-page: 83 year: 2003 end-page: 98 – volume: 13 start-page: 1887 year: 2002 end-page: 1892 article-title: Think differently: A brain orienting response to task novelty publication-title: NeuroReport – volume: 35 start-page: 338 year: 2009 end-page: 351 article-title: Reevaluating encoding‐capacity limitations as a cause of the attentional blink publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 5 start-page: 995 year: 2002 end-page: 1002 article-title: Transient neural activity in human parietal cortex during spatial attention shifts publication-title: Nature Neuroscience – volume: 36 start-page: 264 year: 1999 end-page: 279 article-title: An event‐related brain potential study of visual selective attention to conjunctions of color and shape publication-title: Psychophysiology – volume: 9 start-page: 739 year: 2002 end-page: 743 article-title: Delayed working memory consolidation during the attentional blink publication-title: Psychonomic Bulletin & Review – volume: 21 start-page: 550 year: 2009 end-page: 566 article-title: The attentional blink reveals serial working memory encoding: Evidence from virtual and human event‐related potentials publication-title: Journal of Cognitive Neuroscience – volume: 18 start-page: 849 year: 1992 end-page: 860 article-title: Temporary suppression of visual processing in an RSVP task: An attentional blink? publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 47 start-page: 387 year: 2010 end-page: 392 article-title: Simplifying jackknifing of ERPs and getting more out of it: Retrieving estimates of participants’ latencies publication-title: Psychophysiology – volume: 26 start-page: 1030 year: 2005 end-page: 1041 article-title: Target consolidation under high temporal processing demands as revealed by MEG publication-title: NeuroImage – volume: 45 start-page: 250 year: 2008 end-page: 274 article-title: Measurement of ERP latency differences: A comparison of single‐participant and jackknife‐based scoring methods publication-title: Psychophysiology – volume: 29 start-page: 1631 year: 1989 end-page: 1647 article-title: Sustained and transient components of focal visual attention publication-title: Vision Research – volume: 387 start-page: 805 year: 1997 end-page: 807 article-title: Attentional requirements in a preattentive visual search task publication-title: Nature – volume: 58A start-page: 1415 year: 2005 end-page: 1433 article-title: Lag‐1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode publication-title: Quarterly Journal of Experimental Psychology – volume: 15 start-page: 809 year: 2008 end-page: 813 article-title: An attentional blink for sequentially presented targets: Evidence in favor of resource depletion accounts publication-title: Psychonomic Bulletin & Review – volume: 134 start-page: 9 year: 2004 end-page: 21 article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 115 start-page: 836 year: 2008 end-page: 863 article-title: A boost and bounce theory of temporal attention publication-title: Psychological Review – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B – volume: 27 start-page: 720 year: 2015 end-page: 735 article-title: The attentional blink impairs detection and delays encoding of visual information: Evidence from human electrophysiology publication-title: Journal of Cognitive Neuroscience – volume: 45 start-page: 794 year: 2008 end-page: 803 article-title: Intramodal and crossmodal processing delays in the attentional blink paradigm revealed by event‐related potentials publication-title: Psychophysiology – volume: 47 start-page: 1134 year: 2010 end-page: 1141 article-title: The temporal locus of the interaction between working memory consolidation and the attentional blink publication-title: Psychophysiology – volume: 52 start-page: 1031 year: 2015 end-page: 1038 article-title: Visual search is postponed during the period of the AB: An event‐related potential study publication-title: Psychophysiology – volume: 174 start-page: 307 year: 1971 end-page: 311 article-title: Extremely rapid visual search: The maximum rate of scanning letters for the presence of a numeral publication-title: Science – volume: 440 start-page: 91 year: 2006 end-page: 95 article-title: Dissociable neural mechanisms supporting visual short‐term memory for objects publication-title: Nature – volume: 51 start-page: 658 year: 2014 end-page: 672 article-title: EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task‐switch cues publication-title: Psychophysiology – volume: 12 start-page: 460 year: 2005 end-page: 465 article-title: Bidirectional semantic priming in the attentional blink publication-title: Psychonomic Bulletin & Review – volume: 140 start-page: 488 year: 2011 end-page: 505 article-title: Attentional episodes in visual perception publication-title: Journal of Experimental Psychology: General – volume: 37 start-page: 163 year: 2000 end-page: 178 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – volume: 3 start-page: e3967 year: 2008 article-title: Express attentional re‐engagement but delayed entry into consciousness following invalid spatial cues in visual search publication-title: PLoS ONE – volume: 73 start-page: 56 year: 2011 end-page: 67 article-title: Prior entry explains order reversals in the attentional blink publication-title: Attention, Perception, & Psychophysics – volume: 93 start-page: 180 year: 1986 end-page: 206 article-title: Attention gating in short‐term visual memory publication-title: Psychological Review – volume: 43 start-page: 394 year: 2006 end-page: 400 article-title: Spatial attention freezes during the attentional blink publication-title: Psychophysiology – volume: 114 start-page: 38 year: 2007 end-page: 70 article-title: The simultaneous type, serial token model of temporal attention and working memory publication-title: Psychological Review – volume: 21 start-page: 109 year: 1995 end-page: 127 article-title: A two‐stage model for multiple target detection in rapid serial visual presentation publication-title: Journal of Experimental Psychology: Human Perception and Performance – volume: 23 start-page: 571 year: 2000 end-page: 579 article-title: The distinct modes of vision offered by feedforward and recurrent processing publication-title: Trends in Neuroscience – volume: 34 start-page: 947 year: 2010 end-page: 957 article-title: The attentional blink: Past, present, and future of a blind spot in perceptual awareness publication-title: Neuroscience and Biobehavioral Reviews – volume: 16 start-page: 584 year: 2004 end-page: 597 article-title: Probing the prerequisites for motion blindness publication-title: Journal of Cognitive Neuroscience – volume: 95 start-page: 831 year: 1998 end-page: 838 article-title: Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? publication-title: Proceedings of the National Academy of Sciences (USA) – volume: 71 start-page: 1683 year: 2009 end-page: 1700 article-title: The attentional blink: A review of data and theory publication-title: Attention, Perception, & Psychophysics – volume: 36 start-page: 138 year: 1998 end-page: 202 article-title: The demonstration of short‐term consolidation publication-title: Cognitive Psychology – volume: 38 start-page: 816 year: 2001 end-page: 827 article-title: Using the jackknife‐based scoring method for measuring LRP onset effects in factorial designs publication-title: Psychophysiology – volume: 18 start-page: 1734 year: 2006 end-page: 1748 article-title: Task switching and novelty processing activate a common neural network for cognitive control publication-title: Journal of Cognitive Neuroscience – volume: 428 start-page: 751 year: 2004 end-page: 754 article-title: Capacity limit of visual short‐term memory in human posterior parietal cortex publication-title: Nature – volume: 28 start-page: 299 year: 2000 end-page: 308 article-title: Neural correlates of the attentional blink publication-title: Neuron – ident: e_1_2_7_43_1 doi: 10.1162/089892904323057317 – ident: e_1_2_7_27_1 doi: 10.1038/42940 – ident: e_1_2_7_2_1 doi: 10.1037/a0027610 – ident: e_1_2_7_52_1 doi: 10.1111/psyp.12210 – ident: e_1_2_7_54_1 doi: 10.1038/nrn1052 – ident: e_1_2_7_59_1 doi: 10.1017/S0048577299971135 – ident: e_1_2_7_22_1 doi: 10.3758/APP.71.8.1683 – ident: e_1_2_7_30_1 doi: 10.1111/j.1469-8986.2007.00618.x – ident: e_1_2_7_15_1 doi: 10.3758/s13423-011-0209-3 – ident: e_1_2_7_47_1 doi: 10.1016/j.clinph.2007.04.019 – ident: e_1_2_7_58_1 doi: 10.1016/j.brainres.2006.12.066 – ident: e_1_2_7_70_1 doi: 10.1038/nn921 – ident: e_1_2_7_21_1 doi: 10.3758/PBR.15.4.809 – ident: e_1_2_7_6_1 doi: 10.1097/00001756-200210280-00011 – ident: e_1_2_7_3_1 doi: 10.1111/j.1469-8986.2010.01033.x – ident: e_1_2_7_12_1 doi: 10.1073/pnas.95.3.831 – ident: e_1_2_7_51_1 doi: 10.1016/j.bandc.2004.03.006 – ident: e_1_2_7_41_1 doi: 10.1016/j.neubiorev.2009.12.005 – ident: e_1_2_7_40_1 doi: 10.1162/jocn.2006.18.9.1423 – ident: e_1_2_7_65_1 doi: 10.1017/S0140525X00058015 – ident: e_1_2_7_25_1 doi: 10.1038/385154a0 – ident: e_1_2_7_35_1 doi: 10.1016/S0166-2236(00)01657-X – ident: e_1_2_7_44_1 doi: 10.3758/s13414-010-0004-7 – ident: e_1_2_7_69_1 doi: 10.1038/nature04262 – ident: e_1_2_7_26_1 doi: 10.1006/cogp.1998.0684 – ident: e_1_2_7_7_1 doi: 10.2307/2346101 – ident: e_1_2_7_13_1 doi: 10.1162/jocn.2009.21036 – ident: e_1_2_7_42_1 doi: 10.1016/0042-6989(89)90144-2 – ident: e_1_2_7_32_1 doi: 10.1016/S0926-6410(03)00092-2 – ident: e_1_2_7_66_1 doi: 10.3758/BF03196329 – ident: e_1_2_7_48_1 doi: 10.1037/0278-7393.2.5.509 – ident: e_1_2_7_38_1 doi: 10.1016/j.tics.2005.04.010 – ident: e_1_2_7_56_1 doi: 10.1037/0033-295X.93.2.180 – ident: e_1_2_7_63_1 doi: 10.1038/nature02466 – ident: e_1_2_7_5_1 doi: 10.1162/jocn.2006.18.10.1734 – ident: e_1_2_7_18_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_7_16_1 doi: 10.1037/a0013555 – ident: e_1_2_7_4_1 doi: 10.1111/j.1469-8986.2012.01380.x – ident: e_1_2_7_55_1 doi: 10.1037/0096-1523.18.3.849 – ident: e_1_2_7_17_1 doi: 10.1111/j.1469-8986.2006.00411.x – ident: e_1_2_7_61_1 doi: 10.1126/science.174.4006.307 – ident: e_1_2_7_50_1 doi: 10.3758/BF03193788 – ident: e_1_2_7_45_1 doi: 10.1037/a0013395 – ident: e_1_2_7_68_1 doi: 10.1037/a0023612 – ident: e_1_2_7_10_1 doi: 10.1371/journal.pone.0003967 – ident: e_1_2_7_39_1 doi: 10.1016/S0896-6273(04)00012-1 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2005.02.020 – ident: e_1_2_7_64_1 doi: 10.1111/1469-8986.3850816 – ident: e_1_2_7_36_1 doi: 10.1016/S0278-2626(03)00134-9 – ident: e_1_2_7_31_1 doi: 10.1097/WNR.0b013e32830fe4e8 – ident: e_1_2_7_23_1 doi: 10.1037/a0033949 – ident: e_1_2_7_20_1 doi: 10.1037/0096-3445.129.4.481 – ident: e_1_2_7_53_1 doi: 10.1111/j.1469-8986.2008.00677.x – ident: e_1_2_7_57_1 doi: 10.1162/jocn.2011.21621 – ident: e_1_2_7_34_1 doi: 10.1111/psyp.12435 – ident: e_1_2_7_19_1 doi: 10.1111/j.1469-8986.2004.00193.x – ident: e_1_2_7_49_1 doi: 10.1037/0278-7393.24.4.979 – ident: e_1_2_7_60_1 doi: 10.1111/j.1469-8986.2009.00934.x – ident: e_1_2_7_14_1 doi: 10.1162/jocn_a_00752 – ident: e_1_2_7_8_1 doi: 10.1037/0033-295X.114.1.38 – ident: e_1_2_7_11_1 doi: 10.1037/0096-1523.21.1.109 – ident: e_1_2_7_37_1 doi: 10.1016/S0896-6273(00)00104-5 – ident: e_1_2_7_46_1 doi: 10.1007/978-1-4615-0294-4_5 – ident: e_1_2_7_28_1 doi: 10.1111/1469-8986.3720163 – ident: e_1_2_7_33_1 doi: 10.1016/j.neuroimage.2004.09.024 – ident: e_1_2_7_67_1 doi: 10.1037/0096-1523.24.6.1656 – ident: e_1_2_7_9_1 doi: 10.1111/psyp.12204 – ident: e_1_2_7_62_1 doi: 10.1016/j.cogpsych.2008.12.002 – ident: e_1_2_7_24_1 doi: 10.1080/02724980443000647 |
SSID | ssj0009122 |
Score | 2.26427 |
Snippet | Using the ERP method, we examined the processing operations elicited by stimuli that appear within the same temporal attention window. Forty subjects searched... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 623 |
SubjectTerms | Adult Attention Attention - physiology Attentional blink Attentional Blink - physiology Brain Brain - physiology Electroencephalography Electrophysiology Event-related potentials Evoked Potentials - physiology Female Frontal Lobe - physiology Frontoparietal neural circuit Gating Humans Independent component analysis (ICA) Latency Male Memory Memory, Short-Term - physiology Neuropsychology P3 component Photic Stimulation Physiology Short term memory Temporal variations Visual evoked potentials Visual perception Visual task performance Young Adult |
Title | Enhanced frontal activation underlies sparing from the attentional blink: Evidence from human electrophysiology |
URI | https://api.istex.fr/ark:/67375/WNG-PM6NFQJ5-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.12618 https://www.ncbi.nlm.nih.gov/pubmed/26790988 https://www.proquest.com/docview/1781743458 https://www.proquest.com/docview/1905583620 https://www.proquest.com/docview/1782831032 https://www.proquest.com/docview/1787994010 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1469-8986 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0009122 issn: 0048-5772 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0048-5772 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1469-8986 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009122 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7YUL9MFjS6mMQJVAyiqJ7cRBXCrUparEanlULAdkObEDUml2tdmVKL-eGedRilaV4JbIY8dxZuJv7PE3AM8NYnAruQukcjIQaRkHJhI2wJklR_jAXep8lO84OT0XZ1M53YDX3VmYhh-iX3Ajy_D_azJwk9d_GPm8vpoPI3QA6KRvxKXfo_1wzR2VRS1VuFCBRAzZcpNSGM911Ruz0RYN7M91UPMmcvVTz-gefO063UScXAxXy3xY_PqLz_F_32ob7raYlB03SrQDG67ahb3jCv3xyyt2xHyUqF9-34PZSfXdBw2wkqgPsBqdjGjWdRkdSFsgqK1ZTckNq28kdMkQYzKi8WyD21lOu8avWJfQtBHyyQJZm5Vn3j_xPpyPTj69OQ3apA1BgVhMIVo3cZRQLjNuYyXLMuZpaG1WiEKkVhSuRK0wODNLKUvFjcGb3Apu8IvZSBj-ADarWeUeAUtsnhRF6IiRSMShVWHJkxwbtThWxokBvOg-ni5aRnNKrPFDd54Njab2ozmAZ73svOHxWCt15HWgFzGLC4p8S6X-PH6rJ--S8ej9mdTTARx0SqJbo691lCry74RU64uzUEqFgCEcwNO-GK2ZtmhM5WYr30TsU7_Ft8qkWYZ-MbbzsNHPvr9xkmZhprADL72W3fKuevLxy8Rf7f-L8GO4g5gxaWI-D2BzuVi5J4jLlvmht7_fxyo1pQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_B9gAvfI2PwgAj0CSQUuXDThzeJlgpY6sKbKI8WU7sgDSWVk0rMf567hw3Y6iaBG-pcnES567-nf3z7wBeaMTgRiQ2ENKKgGdVHOiImwBHlgLhQ2Iz61i-o3R4zPcnYuK5ObQXptWH6CbcKDLc_zUFOE1I_xHls-Zs1o8wA5BXYZMW6Cgu3346V4_KIy8WzmUgEEV6dVIi8pxfe2E82qSu_bkObF7Erm7wGdxsK6w2TrOQOCcn_eWi6Je__lJ0_O_3ugU3PCxlu60f3YYrtr4DW7s1puSnZ2yHOaKom4Hfgule_d3xBlhF6gd4GW2OaKd2Ge1JmyOubVhD9Q3rb2R0yhBmMlLy9Px2VtDC8Wu2qmnaGrl6gcwX5pl1d7wLx4O9ozfDwNdtCEqEYxIBu46jlMqZJSaWoqriJAuNyUte8szw0lboGBoHZyFEJROt8UdheKLxk5mI6-QebNTT2j4AlpoiLcvQkigRj0MjwypJC2zUYF9py3vwcvX1VOlFzam2xg-1Sm6oN5XrzR4872xnrZTHWqsd5wSdiZ6fEPktE-rL6J0aH6ajwcd9oSY92F55ifJx36gok5TicSHXn85DISRihrAHz7rTGNC0SqNrO126JmJX_S2-1CbLc0yNsZ37rYN2zxunWR7mEh_glXOzS95VjT9_Hbujh_9i_BSuDY8OD9TB-9GHR3AdIWTaUkC3YWMxX9rHCNMWxRMXjL8B-Sk5wQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVkK8lKPQLhQwAlUCKascduJUvFTQpRRYLUfF8lBZTuyAVJqN9pBofz0zzlGKVpXgLZHHjuPMxN_Y428AnmnE4EZE1hPSCo8nRejpgBsPZ5YM4UNkE-uifIfxwRE_HIvxCrxsz8LU_BDdghtZhvtfk4FXpvjDyKvZWdUP0AGQ12CNx-heEST6dEEelQYNVziXnkAQ2ZCTUhzPRd1L09EajeyvZVjzMnR1c8_gJhy3va5DTk76i3nWz8__InT839e6BesNKGV7tRbdhhVb3oGNvRId8tMztsNcmKhbf9-AyX75w0UNsIK4D7AaHY2oF3YZnUibIqqdsRllNyy_k9ApQ5DJiMeziW5nGW0b77I2o2kt5LIFsiYtT9U98S4cDfa_vDrwmqwNXo5gTCJc12EQUzKzyIRSFEUYJb4xac5znhie2wLVQuPULIQoZKQ13mSGRxq_mAm4ju7Bajkp7Raw2GRxnvuWKIl46BvpF1GcYaMGx0pb3oPn7cdTeUNpTpk1fqrWtaHRVG40e_C0k61qIo-lUjtOBzoRPT2h0LdEqK_DN2r0IR4OPh4KNe7BdqskqrH6mQoSSQ4eF3J5ceoLIREx-D140hWjOdMejS7tZOGaCF3ut_BKmSRN0THGdjZr_ez6G8ZJ6qcSO_DCadkV76pGn7-N3NX9fxF-DNdHrwfq_dvhuwdwA_FjXMd_bsPqfLqwDxGjzbNHzhR_AyefOHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+frontal+activation+underlies+sparing+from+the+attentional+blink%3A+Evidence+from+human+electrophysiology&rft.jtitle=Psychophysiology&rft.au=Dell%27Acqua%2C+Roberto&rft.au=Doro%2C+Mattia&rft.au=Dux%2C+Paul+E&rft.au=Losier%2C+Talia&rft.date=2016-05-01&rft.eissn=1540-5958&rft.volume=53&rft.issue=5&rft.spage=623&rft_id=info:doi/10.1111%2Fpsyp.12618&rft_id=info%3Apmid%2F26790988&rft.externalDocID=26790988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon |