Multi-fidelity modeling to predict the rheological properties of a suspension of fibers using neural networks and Gaussian processes

Unveiling the rheological properties of fiber suspensions is of paramount interest to many industrial applications. There are multiple factors, such as fiber aspect ratio and volume fraction, that play a significant role in altering the rheological behavior of suspensions. Three-dimensional (3D) num...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 34; no. 5
Main Authors Boodaghidizaji, Miad, Khan, Monsurul, Ardekani, Arezoo M.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.05.2022
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
1527-2435
1089-7666
DOI10.1063/5.0087449

Cover

More Information
Summary:Unveiling the rheological properties of fiber suspensions is of paramount interest to many industrial applications. There are multiple factors, such as fiber aspect ratio and volume fraction, that play a significant role in altering the rheological behavior of suspensions. Three-dimensional (3D) numerical simulations of coupled differential equations of the suspension of fibers are computationally expensive and time-consuming. Machine learning algorithms can be trained on the available data and make predictions for the cases where no numerical data are available. However, some widely used machine learning surrogates, such as neural networks, require a relatively large training dataset to produce accurate predictions. Multi-fidelity models, which combine high-fidelity data from numerical simulations and less expensive lower fidelity data from resources such as simplified constitutive equations, can pave the way for more accurate predictions. Here, we focus on neural networks and the Gaussian processes with two levels of fidelity, i.e., high and low fidelity networks, to predict the steady-state rheological properties, and compare them to the single-fidelity network. High-fidelity data are obtained from direct numerical simulations based on an immersed boundary method to couple the fluid and solid motion. The low-fidelity data are produced by using constitutive equations. Multiple neural networks and the Gaussian process structures are used for the hyperparameter tuning purpose. Results indicate that with the best choice of hyperparameters, both the multi-fidelity Gaussian processes and neural networks are capable of making predictions with a high level of accuracy with neural networks demonstrating marginally better performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
EE0008910
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ISSN:1070-6631
1089-7666
1527-2435
1089-7666
DOI:10.1063/5.0087449