Revolutionizing diabetic eye disease detection: retinal image analysis with cutting-edge deep learning techniques

Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectio...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e2186
Main Authors D, Banumathy, Angamuthu, Swathi, Balaji, Prasanalakshmi, Ajay Chaurasia, Mousmi
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 23.09.2024
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.2186

Cover

Abstract Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.
AbstractList Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.
Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.
ArticleNumber e2186
Audience Academic
Author Ajay Chaurasia, Mousmi
D, Banumathy
Angamuthu, Swathi
Balaji, Prasanalakshmi
Author_xml – sequence: 1
  givenname: Banumathy
  surname: D
  fullname: D, Banumathy
  organization: Department of Computer Science and Engineering, Paavai Engineering College, Namakkal, Tamilnadu, India
– sequence: 2
  givenname: Swathi
  surname: Angamuthu
  fullname: Angamuthu, Swathi
  organization: Department of Mathematics,Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
– sequence: 3
  givenname: Prasanalakshmi
  surname: Balaji
  fullname: Balaji, Prasanalakshmi
  organization: Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia
– sequence: 4
  givenname: Mousmi
  surname: Ajay Chaurasia
  fullname: Ajay Chaurasia, Mousmi
  organization: Muffakham Jah College of Engineering & Technology, Hyderabad, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39650355$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUjFARLaVHrigSFzhkseM4sblVFR8rVUIqcLZe7JfUq6yztR3K9tfXaUphT9gH2-_NjGb0_DI7cqPDLHtNyappaPNhh-g3hQ6rkor6WXZSsqYuuJTl0T_34-wshA0hhHKalnyRHTNZc8I4P8lurvDXOEzRjs7eWdfnxkKL0eoc95geASGkEyPqGfMx96npYMjtFnrMIV33wYb81sbrXE8xNfsCTT9zcJcPCN7Nsol_7ezNhOFV9ryDIeDZ43ma_fz86cfF1-Ly25f1xflloSvOYyFQdJQ0sjWi7GQJhpNWJNe1YFRzBoRWWlasE9pUTFCmuRai5bUpOaAEzk6z9aJrRtionU-G_V6NYNVDYfS9Ap-CDqgkYmmgKitJWcUaClRQymUrjOgIAk1aq0VrcjvY38IwPAlSouZRqIdRKB3UPIpEeLcQdn6cQ0e1tUHjMIDDcQqK0aquCa8oSdC3C7SHZMW6bowe9AxX5ylXQyrO6r8ODlBpG9xanX5FZ1P9gPD-gJAwEX_HHqYQ1Pr71SH2zaPbqd2iecr255skQLEAtB9D8Nj9J_49d5LPlg
Cites_doi 10.1136/bjo.84.3.264
10.1109/ACCESS.2020.3015258
10.1001/jama.2014.3192
10.3991/ijoe.v18i13.33985
10.1016/j.ophtha.2016.05.029
10.1007/978-981-33-4859-2_42
10.19153/cleiej.19.2.4
10.1109/TPAMI.2018.2858826
10.1109/SIU.2018.8404369
10.1016/j.compmedimag.2019.02.005
10.1016/j.media.2019.101570
10.1167/tvst.9.2.42
10.1016/j.micpro.2023.104794
10.1155/2013/789129
10.36227/techrxiv
10.1186/s12938-019-0649-y
10.1186/s40064-016-3175-4
10.1007/978-3-319-24574-4_80
10.1109/TMI.2023.3307689
10.3390/s21165283
10.1111/j.1755-3768.2009.01784.x
10.1016/j.ajo.2004.08.076
10.1109/TBME.2002.802012
ContentType Journal Article
Copyright 2024 D et al.
COPYRIGHT 2024 PeerJ. Ltd.
Copyright_xml – notice: 2024 D et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
ADTOC
UNPAY
DOA
DOI 10.7717/peerj-cs.2186
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_9ee2da4249134371a181159b8d8f0ea1
10.7717/peerj-cs.2186
A813704536
39650355
10_7717_peerj_cs_2186
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
3V.
H13
M0N
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c455t-8e8f1079bd82f92ad50b86506831c53a014c943f8cd43813c5c88b56d25ae9a53
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Tue Oct 14 18:57:48 EDT 2025
Sun Oct 26 04:10:11 EDT 2025
Thu Sep 04 17:46:06 EDT 2025
Mon Oct 20 22:47:28 EDT 2025
Mon Oct 20 16:55:18 EDT 2025
Thu Oct 16 15:51:19 EDT 2025
Thu Jan 02 22:29:38 EST 2025
Wed Oct 01 04:49:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Glaucoma
CNN
Multi-task deep learning
Optic Nerve Head
Retinal fundus
Language English
License https://creativecommons.org/licenses/by/4.0
2024 D et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-8e8f1079bd82f92ad50b86506831c53a014c943f8cd43813c5c88b56d25ae9a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/9ee2da4249134371a181159b8d8f0ea1
PMID 39650355
PQID 3146605410
PQPubID 23479
PageCount e2186
ParticipantIDs doaj_primary_oai_doaj_org_article_9ee2da4249134371a181159b8d8f0ea1
unpaywall_primary_10_7717_peerj_cs_2186
proquest_miscellaneous_3146605410
gale_infotracmisc_A813704536
gale_infotracacademiconefile_A813704536
gale_incontextgauss_ISR_A813704536
pubmed_primary_39650355
crossref_primary_10_7717_peerj_cs_2186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-23
PublicationDateYYYYMMDD 2024-09-23
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Barella (10.7717/peerj-cs.2186/ref-5) 2013; 2013
Al-hazaimeh (10.7717/peerj-cs.2186/ref-1) 2022; 18
Fan (10.7717/peerj-cs.2186/ref-12) 2023; 42
Goldbaum (10.7717/peerj-cs.2186/ref-14) 2002; 43
Jena (10.7717/peerj-cs.2186/ref-16) 2018
Claro (10.7717/peerj-cs.2186/ref-9) 2016; 19
Priyanka (10.7717/peerj-cs.2186/ref-22) 2021; vol. 1311
Sarki (10.7717/peerj-cs.2186/ref-24) 2020; 8
Asaoka (10.7717/peerj-cs.2186/ref-4) 2016; 123
Kumar (10.7717/peerj-cs.2186/ref-17) 2016
Salam (10.7717/peerj-cs.2186/ref-23) 2016; 5
Thompson (10.7717/peerj-cs.2186/ref-26) 2020; 9
Chen (10.7717/peerj-cs.2186/ref-8) 2015; 9351
Aluvalu (10.7717/peerj-cs.2186/ref-3) 2023; 98
Yu (10.7717/peerj-cs.2186/ref-30) 2019; 74
Chan (10.7717/peerj-cs.2186/ref-7) 2002; 49
Lin (10.7717/peerj-cs.2186/ref-18) 2020; 42
Nazir (10.7717/peerj-cs.2186/ref-19) 2021; 21
Tay (10.7717/peerj-cs.2186/ref-25) 2005; 139
Jain (10.7717/peerj-cs.2186/ref-15) 2018
Diaz-Pinto (10.7717/peerj-cs.2186/ref-10) 2019; 18
Zhang (10.7717/peerj-cs.2186/ref-31) 2010
Vaswani (10.7717/peerj-cs.2186/ref-27) 2017
Weinreb (10.7717/peerj-cs.2186/ref-28) 2014; 311
Fan (10.7717/peerj-cs.2186/ref-13) 2022; 140
Orlando (10.7717/peerj-cs.2186/ref-20) 2020; 59
Alghamdi (10.7717/peerj-cs.2186/ref-2) 2016
Yalçin (10.7717/peerj-cs.2186/ref-29) 2018
Bizios (10.7717/peerj-cs.2186/ref-6) 2010; 88
Özdek (10.7717/peerj-cs.2186/ref-21) 2000; 84
Dosovitskiy (10.7717/peerj-cs.2186/ref-11) 2020
References_xml – volume: 84
  start-page: 264
  issue: 3
  year: 2000
  ident: 10.7717/peerj-cs.2186/ref-21
  article-title: Scanning laser polarimetry in normal subjects and patients with myopia
  publication-title: British Journal of Ophthalmology
  doi: 10.1136/bjo.84.3.264
– volume: 8
  start-page: 151133
  year: 2020
  ident: 10.7717/peerj-cs.2186/ref-24
  article-title: Automatic detection of diabetic eye disease through deep learning using fundus images: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015258
– start-page: 1
  year: 2016
  ident: 10.7717/peerj-cs.2186/ref-17
  article-title: Detection of glaucoma using image processing techniques: a review
– year: 2020
  ident: 10.7717/peerj-cs.2186/ref-11
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
– start-page: 523
  year: 2018
  ident: 10.7717/peerj-cs.2186/ref-16
  article-title: Detection of diabetic retinopathy images using a fully convolutional neural network
– volume: 311
  start-page: 1901
  issue: 18
  year: 2014
  ident: 10.7717/peerj-cs.2186/ref-28
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
  doi: 10.1001/jama.2014.3192
– volume: 18
  start-page: 131
  issue: 13
  year: 2022
  ident: 10.7717/peerj-cs.2186/ref-1
  article-title: Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images
  publication-title: International Journal of Online & Biomedical Engineering
  doi: 10.3991/ijoe.v18i13.33985
– volume: 123
  start-page: 1974
  year: 2016
  ident: 10.7717/peerj-cs.2186/ref-4
  article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.05.029
– volume: vol. 1311
  start-page: 425
  volume-title: Machine Learning and Information Processing. Advances in Intelligent Systems and Computing
  year: 2021
  ident: 10.7717/peerj-cs.2186/ref-22
  article-title: Automated glaucoma detection using cup to disk ratio and grey level co-occurrence matrix
  doi: 10.1007/978-981-33-4859-2_42
– volume: 19
  start-page: 1
  year: 2016
  ident: 10.7717/peerj-cs.2186/ref-9
  article-title: Automatic glaucoma detection based on optic disc segmentation and texture feature extraction
  publication-title: CLEI Eletronic Journal
  doi: 10.19153/cleiej.19.2.4
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.2186/ref-18
  article-title: Focal loss for dense object detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2858826
– year: 2018
  ident: 10.7717/peerj-cs.2186/ref-29
  article-title: Classification of retinal images with deep learning for early detection of diabetic retinopathy disease
  doi: 10.1109/SIU.2018.8404369
– volume: 74
  start-page: 61
  year: 2019
  ident: 10.7717/peerj-cs.2186/ref-30
  article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2019.02.005
– volume: 59
  start-page: 101570
  year: 2020
  ident: 10.7717/peerj-cs.2186/ref-20
  article-title: REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.101570
– volume: 9
  start-page: 42
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.2186/ref-26
  article-title: A review of deep learning for screening, diagnosis, and detection of glaucoma progression
  publication-title: Translational Vision Science & Technology
  doi: 10.1167/tvst.9.2.42
– volume: 98
  start-page: 104794
  year: 2023
  ident: 10.7717/peerj-cs.2186/ref-3
  article-title: The novel emergency hospital services for patients using digital twins
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2023.104794
– volume: 2013
  start-page: 789129
  year: 2013
  ident: 10.7717/peerj-cs.2186/ref-5
  article-title: Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT
  publication-title: British Journal of Ophthalmology
  doi: 10.1155/2013/789129
– volume: 140
  start-page: 383
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.2186/ref-13
  article-title: Detecting glaucoma in the ocular hypertension treatment study using deep learning: implications for clinical trial endpoints
  publication-title: JAMA Ophthalmology
  doi: 10.36227/techrxiv
– volume: 18
  start-page: 29
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.2186/ref-10
  article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation
  publication-title: Biomedical Engineering
  doi: 10.1186/s12938-019-0649-y
– volume: 5
  start-page: 1519
  issue: 1
  year: 2016
  ident: 10.7717/peerj-cs.2186/ref-23
  article-title: Automated detection of glaucoma using structural and nonstructural features
  publication-title: Springerplus
  doi: 10.1186/s40064-016-3175-4
– volume: 9351
  start-page: 669
  year: 2015
  ident: 10.7717/peerj-cs.2186/ref-8
  article-title: Automatic feature learning for glaucoma detection based on deep learning. MICCAI (3)
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-319-24574-4_80
– volume: 42
  start-page: 3764
  issue: 12
  year: 2023
  ident: 10.7717/peerj-cs.2186/ref-12
  article-title: One-vote veto: semisupervised learning for low-shot glaucoma diagnosis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2023.3307689
– volume: 43
  start-page: 162
  issue: 1
  year: 2002
  ident: 10.7717/peerj-cs.2186/ref-14
  article-title: Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 21
  start-page: 5283
  issue: 16
  year: 2021
  ident: 10.7717/peerj-cs.2186/ref-19
  article-title: Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model
  publication-title: Sensors
  doi: 10.3390/s21165283
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.2186/ref-15
  article-title: Retinal eye disease detection using deep learning
– volume: 88
  start-page: 44
  issue: 1
  year: 2010
  ident: 10.7717/peerj-cs.2186/ref-6
  article-title: Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT
  publication-title: Acta Ophthalmologica
  doi: 10.1111/j.1755-3768.2009.01784.x
– volume: 139
  start-page: 247
  issue: 2
  year: 2005
  ident: 10.7717/peerj-cs.2186/ref-25
  article-title: Optic disk ovality as an index of tilt and its relationship to myopia and perimetry
  publication-title: American Journal of Ophthalmology
  doi: 10.1016/j.ajo.2004.08.076
– start-page: 5998
  year: 2017
  ident: 10.7717/peerj-cs.2186/ref-27
  article-title: Attention is all you need
– start-page: 3065
  year: 2010
  ident: 10.7717/peerj-cs.2186/ref-31
  article-title: Origa-light: an online retinal fundus image database for glaucoma analysis and research
– start-page: 10
  year: 2016
  ident: 10.7717/peerj-cs.2186/ref-2
  article-title: Automatic optic disc abnormality detection in fundus images: a deep learning approach
– volume: 49
  start-page: 963
  issue: 9
  year: 2002
  ident: 10.7717/peerj-cs.2186/ref-7
  article-title: Comparison of machine learning and traditional classifiers in glaucoma diagnosis
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2002.802012
SSID ssj0001511119
Score 2.27117
Snippet Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e2186
SubjectTerms CNN
Data mining
Glaucoma
Medical imaging equipment
Methods
Multi-task deep learning
Optic Nerve Head
Retinal fundus
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvG98rDGQQgqeU-iuxeSto00BiQoNK48lyHHsqjLQ0CWj76zknTtWq0sRrfPnw-ez7nXP-HUKvqCe5lJYlwhCZcGZ8Il1ukoxyL4jNIGQJh5M_n6YnU_7pXJzvoL6i4Nrv-wwCjbcL55Y_EluNQumkW2g3FYC4B2h3evpl8r2tG5eliVCKdvSZ2_dsuJuWlX977V1zPrebcmGu_prLyzUvc7yPjvqzOl1yyc9RU-cje71N3XhjB-6ivQgz8aSzi3tox5X30X5fwgHHGf0A_T5zf6Lxza7Bi-FuL3ZmsbtyOP69wYWr24yt8h0Ohx7Dk2e_YCHCJlKa4LCdi23TJlEnYYsO7nELHGtSXOAVVWz1EE2Pj759OEliFYbEciFqGDrpIUZUeSGpV9QUYpxLwHWpZMQKZiDGsoozH6oggftnVlgpc5EWVBinjGCP0KCcl-4AYbgIgCY1BhwELwCbcuG5cIVQOSXOkyF63Q-WXnRkGxqClKBI3SpS20oHRQ7R-zCUK6HAkd1eANXrOOW0co4WhkN8SRhnGQFjBPircllIP3YG3vYyGIIOLBhlSLO5ME1V6Y9fz_QE-pEB2GXwpjdRyM_rpbEmnlqADgXirA3Jww1JmKZ2o_lFb286NIXcttLNm0ozcFYQVHIyHqLHnSGuOsYUaBogIXzGyjJvVs2T_5Z8iu5QQGgh-YWyQzSol417Bgirzp_HCfYP0iQlTw
  priority: 102
  providerName: Unpaywall
Title Revolutionizing diabetic eye disease detection: retinal image analysis with cutting-edge deep learning techniques
URI https://www.ncbi.nlm.nih.gov/pubmed/39650355
https://www.proquest.com/docview/3146605410
http://doi.org/10.7717/peerj-cs.2186
https://doaj.org/article/9ee2da4249134371a181159b8d8f0ea1
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCF96OwVAYhOIWtX43DrYu2LEhUq0Kl5WQ5jr0q2k27TQJafj0ziVu1QoILxyTOwzNjzzfO-BtCXvHAcq2dSJRlOpHChkT73CYpl0Exl0LIgpuTP0-GxzP56VSdbpX6wpywjh64E9xB5j0vrIQogQkpUgaPBBCT5brQYeBtG_gMdLYVTHX7g3EqyDpSzRRCloOl96vviaveYhGmHSfUcvX_OSNvuaSbTbm0Vz_t-fmW7xnfJbcjaKSj7mPvkWu-vE_urAsy0Dg-H5DLqf8RTWn-C3wS7VZW5476K0_jvxha-LrNvyrfUdzCiE-eX8C0Qm0kKKG4OEtd06ZEJ7jgBvf4JY0VJs7ohvi1ekhm46Ov74-TWFMhcVKpGhShA0R8WV5oHjJuCzXINaC0oRbMKWEhYnKZFAFrGoEzF045rXM1LLiyPrNKPCJ75aL0TwiFkwBPhtbCdC8LQJpSBal8AcrhzAfWI6_XQjbLjjrDQMiB2jCtNoyrDGqjRw5RBZtGyHjdngA7MNEOzL_soEdeogINclqUmDRzZpuqMh-_TM0I-pECdBXwpjexUVjUK-ts3IMAHUIarJ2W-zstYdC5ncsv1nZi8BJmqpV-0VRGgOuBEFGyQY887gxo0zGRgaQB4MFnbCzq76J5-j9E84zc4gDFMMuFi32yV68a_xygVJ33yXU9_tAnNw6PJifTfjuG4Gg2ORl9-w1dliC6
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvG98rDGQQgqeU-iuxeSto00BiQoNK48lyHHsqjLQ0CWj76zknTtWq0sRrfPnw-ez7nXP-HUKvqCe5lJYlwhCZcGZ8Il1ukoxyL4jNIGQJh5M_n6YnU_7pXJzvoL6i4Nrv-wwCjbcL55Y_EluNQumkW2g3FYC4B2h3evpl8r2tG5eliVCKdvSZ2_dsuJuWlX977V1zPrebcmGu_prLyzUvc7yPjvqzOl1yyc9RU-cje71N3XhjB-6ivQgz8aSzi3tox5X30X5fwgHHGf0A_T5zf6Lxza7Bi-FuL3ZmsbtyOP69wYWr24yt8h0Ohx7Dk2e_YCHCJlKa4LCdi23TJlEnYYsO7nELHGtSXOAVVWz1EE2Pj759OEliFYbEciFqGDrpIUZUeSGpV9QUYpxLwHWpZMQKZiDGsoozH6oggftnVlgpc5EWVBinjGCP0KCcl-4AYbgIgCY1BhwELwCbcuG5cIVQOSXOkyF63Q-WXnRkGxqClKBI3SpS20oHRQ7R-zCUK6HAkd1eANXrOOW0co4WhkN8SRhnGQFjBPircllIP3YG3vYyGIIOLBhlSLO5ME1V6Y9fz_QE-pEB2GXwpjdRyM_rpbEmnlqADgXirA3Jww1JmKZ2o_lFb286NIXcttLNm0ozcFYQVHIyHqLHnSGuOsYUaBogIXzGyjJvVs2T_5Z8iu5QQGgh-YWyQzSol417Bgirzp_HCfYP0iQlTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+diabetic+eye+disease+detection%3A+retinal+image+analysis+with+cutting-edge+deep+learning+techniques&rft.jtitle=PeerJ.+Computer+science&rft.au=D%2C+Banumathy&rft.au=Angamuthu%2C+Swathi&rft.au=Balaji%2C+Prasanalakshmi&rft.au=Ajay+Chaurasia%2C+Mousmi&rft.date=2024-09-23&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2186&rft_id=info:doi/10.7717%2Fpeerj-cs.2186&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon