Revolutionizing diabetic eye disease detection: retinal image analysis with cutting-edge deep learning techniques
Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectio...
Saved in:
| Published in | PeerJ. Computer science Vol. 10; p. e2186 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
PeerJ. Ltd
23.09.2024
PeerJ Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2376-5992 2376-5992 |
| DOI | 10.7717/peerj-cs.2186 |
Cover
| Abstract | Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention. |
|---|---|
| AbstractList | Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention. Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention. |
| ArticleNumber | e2186 |
| Audience | Academic |
| Author | Ajay Chaurasia, Mousmi D, Banumathy Angamuthu, Swathi Balaji, Prasanalakshmi |
| Author_xml | – sequence: 1 givenname: Banumathy surname: D fullname: D, Banumathy organization: Department of Computer Science and Engineering, Paavai Engineering College, Namakkal, Tamilnadu, India – sequence: 2 givenname: Swathi surname: Angamuthu fullname: Angamuthu, Swathi organization: Department of Mathematics,Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic – sequence: 3 givenname: Prasanalakshmi surname: Balaji fullname: Balaji, Prasanalakshmi organization: Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia – sequence: 4 givenname: Mousmi surname: Ajay Chaurasia fullname: Ajay Chaurasia, Mousmi organization: Muffakham Jah College of Engineering & Technology, Hyderabad, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39650355$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUk1v1DAUjFARLaVHrigSFzhkseM4sblVFR8rVUIqcLZe7JfUq6yztR3K9tfXaUphT9gH2-_NjGb0_DI7cqPDLHtNyappaPNhh-g3hQ6rkor6WXZSsqYuuJTl0T_34-wshA0hhHKalnyRHTNZc8I4P8lurvDXOEzRjs7eWdfnxkKL0eoc95geASGkEyPqGfMx96npYMjtFnrMIV33wYb81sbrXE8xNfsCTT9zcJcPCN7Nsol_7ezNhOFV9ryDIeDZ43ma_fz86cfF1-Ly25f1xflloSvOYyFQdJQ0sjWi7GQJhpNWJNe1YFRzBoRWWlasE9pUTFCmuRai5bUpOaAEzk6z9aJrRtionU-G_V6NYNVDYfS9Ap-CDqgkYmmgKitJWcUaClRQymUrjOgIAk1aq0VrcjvY38IwPAlSouZRqIdRKB3UPIpEeLcQdn6cQ0e1tUHjMIDDcQqK0aquCa8oSdC3C7SHZMW6bowe9AxX5ylXQyrO6r8ODlBpG9xanX5FZ1P9gPD-gJAwEX_HHqYQ1Pr71SH2zaPbqd2iecr255skQLEAtB9D8Nj9J_49d5LPlg |
| Cites_doi | 10.1136/bjo.84.3.264 10.1109/ACCESS.2020.3015258 10.1001/jama.2014.3192 10.3991/ijoe.v18i13.33985 10.1016/j.ophtha.2016.05.029 10.1007/978-981-33-4859-2_42 10.19153/cleiej.19.2.4 10.1109/TPAMI.2018.2858826 10.1109/SIU.2018.8404369 10.1016/j.compmedimag.2019.02.005 10.1016/j.media.2019.101570 10.1167/tvst.9.2.42 10.1016/j.micpro.2023.104794 10.1155/2013/789129 10.36227/techrxiv 10.1186/s12938-019-0649-y 10.1186/s40064-016-3175-4 10.1007/978-3-319-24574-4_80 10.1109/TMI.2023.3307689 10.3390/s21165283 10.1111/j.1755-3768.2009.01784.x 10.1016/j.ajo.2004.08.076 10.1109/TBME.2002.802012 |
| ContentType | Journal Article |
| Copyright | 2024 D et al. COPYRIGHT 2024 PeerJ. Ltd. |
| Copyright_xml | – notice: 2024 D et al. – notice: COPYRIGHT 2024 PeerJ. Ltd. |
| DBID | AAYXX CITATION NPM ISR 7X8 ADTOC UNPAY DOA |
| DOI | 10.7717/peerj-cs.2186 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_9ee2da4249134371a181159b8d8f0ea1 10.7717/peerj-cs.2186 A813704536 39650355 10_7717_peerj_cs_2186 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM 3V. H13 M0N NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c455t-8e8f1079bd82f92ad50b86506831c53a014c943f8cd43813c5c88b56d25ae9a53 |
| IEDL.DBID | DOA |
| ISSN | 2376-5992 |
| IngestDate | Tue Oct 14 18:57:48 EDT 2025 Sun Oct 26 04:10:11 EDT 2025 Thu Sep 04 17:46:06 EDT 2025 Mon Oct 20 22:47:28 EDT 2025 Mon Oct 20 16:55:18 EDT 2025 Thu Oct 16 15:51:19 EDT 2025 Thu Jan 02 22:29:38 EST 2025 Wed Oct 01 04:49:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Glaucoma CNN Multi-task deep learning Optic Nerve Head Retinal fundus |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2024 D et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-8e8f1079bd82f92ad50b86506831c53a014c943f8cd43813c5c88b56d25ae9a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/9ee2da4249134371a181159b8d8f0ea1 |
| PMID | 39650355 |
| PQID | 3146605410 |
| PQPubID | 23479 |
| PageCount | e2186 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ee2da4249134371a181159b8d8f0ea1 unpaywall_primary_10_7717_peerj_cs_2186 proquest_miscellaneous_3146605410 gale_infotracmisc_A813704536 gale_infotracacademiconefile_A813704536 gale_incontextgauss_ISR_A813704536 pubmed_primary_39650355 crossref_primary_10_7717_peerj_cs_2186 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-23 |
| PublicationDateYYYYMMDD | 2024-09-23 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2024 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Barella (10.7717/peerj-cs.2186/ref-5) 2013; 2013 Al-hazaimeh (10.7717/peerj-cs.2186/ref-1) 2022; 18 Fan (10.7717/peerj-cs.2186/ref-12) 2023; 42 Goldbaum (10.7717/peerj-cs.2186/ref-14) 2002; 43 Jena (10.7717/peerj-cs.2186/ref-16) 2018 Claro (10.7717/peerj-cs.2186/ref-9) 2016; 19 Priyanka (10.7717/peerj-cs.2186/ref-22) 2021; vol. 1311 Sarki (10.7717/peerj-cs.2186/ref-24) 2020; 8 Asaoka (10.7717/peerj-cs.2186/ref-4) 2016; 123 Kumar (10.7717/peerj-cs.2186/ref-17) 2016 Salam (10.7717/peerj-cs.2186/ref-23) 2016; 5 Thompson (10.7717/peerj-cs.2186/ref-26) 2020; 9 Chen (10.7717/peerj-cs.2186/ref-8) 2015; 9351 Aluvalu (10.7717/peerj-cs.2186/ref-3) 2023; 98 Yu (10.7717/peerj-cs.2186/ref-30) 2019; 74 Chan (10.7717/peerj-cs.2186/ref-7) 2002; 49 Lin (10.7717/peerj-cs.2186/ref-18) 2020; 42 Nazir (10.7717/peerj-cs.2186/ref-19) 2021; 21 Tay (10.7717/peerj-cs.2186/ref-25) 2005; 139 Jain (10.7717/peerj-cs.2186/ref-15) 2018 Diaz-Pinto (10.7717/peerj-cs.2186/ref-10) 2019; 18 Zhang (10.7717/peerj-cs.2186/ref-31) 2010 Vaswani (10.7717/peerj-cs.2186/ref-27) 2017 Weinreb (10.7717/peerj-cs.2186/ref-28) 2014; 311 Fan (10.7717/peerj-cs.2186/ref-13) 2022; 140 Orlando (10.7717/peerj-cs.2186/ref-20) 2020; 59 Alghamdi (10.7717/peerj-cs.2186/ref-2) 2016 Yalçin (10.7717/peerj-cs.2186/ref-29) 2018 Bizios (10.7717/peerj-cs.2186/ref-6) 2010; 88 Özdek (10.7717/peerj-cs.2186/ref-21) 2000; 84 Dosovitskiy (10.7717/peerj-cs.2186/ref-11) 2020 |
| References_xml | – volume: 84 start-page: 264 issue: 3 year: 2000 ident: 10.7717/peerj-cs.2186/ref-21 article-title: Scanning laser polarimetry in normal subjects and patients with myopia publication-title: British Journal of Ophthalmology doi: 10.1136/bjo.84.3.264 – volume: 8 start-page: 151133 year: 2020 ident: 10.7717/peerj-cs.2186/ref-24 article-title: Automatic detection of diabetic eye disease through deep learning using fundus images: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015258 – start-page: 1 year: 2016 ident: 10.7717/peerj-cs.2186/ref-17 article-title: Detection of glaucoma using image processing techniques: a review – year: 2020 ident: 10.7717/peerj-cs.2186/ref-11 article-title: An image is worth 16x16 words: transformers for image recognition at scale – start-page: 523 year: 2018 ident: 10.7717/peerj-cs.2186/ref-16 article-title: Detection of diabetic retinopathy images using a fully convolutional neural network – volume: 311 start-page: 1901 issue: 18 year: 2014 ident: 10.7717/peerj-cs.2186/ref-28 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA doi: 10.1001/jama.2014.3192 – volume: 18 start-page: 131 issue: 13 year: 2022 ident: 10.7717/peerj-cs.2186/ref-1 article-title: Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images publication-title: International Journal of Online & Biomedical Engineering doi: 10.3991/ijoe.v18i13.33985 – volume: 123 start-page: 1974 year: 2016 ident: 10.7717/peerj-cs.2186/ref-4 article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.05.029 – volume: vol. 1311 start-page: 425 volume-title: Machine Learning and Information Processing. Advances in Intelligent Systems and Computing year: 2021 ident: 10.7717/peerj-cs.2186/ref-22 article-title: Automated glaucoma detection using cup to disk ratio and grey level co-occurrence matrix doi: 10.1007/978-981-33-4859-2_42 – volume: 19 start-page: 1 year: 2016 ident: 10.7717/peerj-cs.2186/ref-9 article-title: Automatic glaucoma detection based on optic disc segmentation and texture feature extraction publication-title: CLEI Eletronic Journal doi: 10.19153/cleiej.19.2.4 – volume: 42 start-page: 318 issue: 2 year: 2020 ident: 10.7717/peerj-cs.2186/ref-18 article-title: Focal loss for dense object detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2858826 – year: 2018 ident: 10.7717/peerj-cs.2186/ref-29 article-title: Classification of retinal images with deep learning for early detection of diabetic retinopathy disease doi: 10.1109/SIU.2018.8404369 – volume: 74 start-page: 61 year: 2019 ident: 10.7717/peerj-cs.2186/ref-30 article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2019.02.005 – volume: 59 start-page: 101570 year: 2020 ident: 10.7717/peerj-cs.2186/ref-20 article-title: REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs publication-title: Medical Image Analysis doi: 10.1016/j.media.2019.101570 – volume: 9 start-page: 42 issue: 2 year: 2020 ident: 10.7717/peerj-cs.2186/ref-26 article-title: A review of deep learning for screening, diagnosis, and detection of glaucoma progression publication-title: Translational Vision Science & Technology doi: 10.1167/tvst.9.2.42 – volume: 98 start-page: 104794 year: 2023 ident: 10.7717/peerj-cs.2186/ref-3 article-title: The novel emergency hospital services for patients using digital twins publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2023.104794 – volume: 2013 start-page: 789129 year: 2013 ident: 10.7717/peerj-cs.2186/ref-5 article-title: Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT publication-title: British Journal of Ophthalmology doi: 10.1155/2013/789129 – volume: 140 start-page: 383 issue: 4 year: 2022 ident: 10.7717/peerj-cs.2186/ref-13 article-title: Detecting glaucoma in the ocular hypertension treatment study using deep learning: implications for clinical trial endpoints publication-title: JAMA Ophthalmology doi: 10.36227/techrxiv – volume: 18 start-page: 29 issue: 1 year: 2019 ident: 10.7717/peerj-cs.2186/ref-10 article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation publication-title: Biomedical Engineering doi: 10.1186/s12938-019-0649-y – volume: 5 start-page: 1519 issue: 1 year: 2016 ident: 10.7717/peerj-cs.2186/ref-23 article-title: Automated detection of glaucoma using structural and nonstructural features publication-title: Springerplus doi: 10.1186/s40064-016-3175-4 – volume: 9351 start-page: 669 year: 2015 ident: 10.7717/peerj-cs.2186/ref-8 article-title: Automatic feature learning for glaucoma detection based on deep learning. MICCAI (3) publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-24574-4_80 – volume: 42 start-page: 3764 issue: 12 year: 2023 ident: 10.7717/peerj-cs.2186/ref-12 article-title: One-vote veto: semisupervised learning for low-shot glaucoma diagnosis publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2023.3307689 – volume: 43 start-page: 162 issue: 1 year: 2002 ident: 10.7717/peerj-cs.2186/ref-14 article-title: Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry publication-title: Investigative Ophthalmology & Visual Science – volume: 21 start-page: 5283 issue: 16 year: 2021 ident: 10.7717/peerj-cs.2186/ref-19 article-title: Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model publication-title: Sensors doi: 10.3390/s21165283 – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.2186/ref-15 article-title: Retinal eye disease detection using deep learning – volume: 88 start-page: 44 issue: 1 year: 2010 ident: 10.7717/peerj-cs.2186/ref-6 article-title: Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT publication-title: Acta Ophthalmologica doi: 10.1111/j.1755-3768.2009.01784.x – volume: 139 start-page: 247 issue: 2 year: 2005 ident: 10.7717/peerj-cs.2186/ref-25 article-title: Optic disk ovality as an index of tilt and its relationship to myopia and perimetry publication-title: American Journal of Ophthalmology doi: 10.1016/j.ajo.2004.08.076 – start-page: 5998 year: 2017 ident: 10.7717/peerj-cs.2186/ref-27 article-title: Attention is all you need – start-page: 3065 year: 2010 ident: 10.7717/peerj-cs.2186/ref-31 article-title: Origa-light: an online retinal fundus image database for glaucoma analysis and research – start-page: 10 year: 2016 ident: 10.7717/peerj-cs.2186/ref-2 article-title: Automatic optic disc abnormality detection in fundus images: a deep learning approach – volume: 49 start-page: 963 issue: 9 year: 2002 ident: 10.7717/peerj-cs.2186/ref-7 article-title: Comparison of machine learning and traditional classifiers in glaucoma diagnosis publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2002.802012 |
| SSID | ssj0001511119 |
| Score | 2.27117 |
| Snippet | Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e2186 |
| SubjectTerms | CNN Data mining Glaucoma Medical imaging equipment Methods Multi-task deep learning Optic Nerve Head Retinal fundus |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvG98rDGQQgqeU-iuxeSto00BiQoNK48lyHHsqjLQ0CWj76zknTtWq0sRrfPnw-ez7nXP-HUKvqCe5lJYlwhCZcGZ8Il1ukoxyL4jNIGQJh5M_n6YnU_7pXJzvoL6i4Nrv-wwCjbcL55Y_EluNQumkW2g3FYC4B2h3evpl8r2tG5eliVCKdvSZ2_dsuJuWlX977V1zPrebcmGu_prLyzUvc7yPjvqzOl1yyc9RU-cje71N3XhjB-6ivQgz8aSzi3tox5X30X5fwgHHGf0A_T5zf6Lxza7Bi-FuL3ZmsbtyOP69wYWr24yt8h0Ohx7Dk2e_YCHCJlKa4LCdi23TJlEnYYsO7nELHGtSXOAVVWz1EE2Pj759OEliFYbEciFqGDrpIUZUeSGpV9QUYpxLwHWpZMQKZiDGsoozH6oggftnVlgpc5EWVBinjGCP0KCcl-4AYbgIgCY1BhwELwCbcuG5cIVQOSXOkyF63Q-WXnRkGxqClKBI3SpS20oHRQ7R-zCUK6HAkd1eANXrOOW0co4WhkN8SRhnGQFjBPircllIP3YG3vYyGIIOLBhlSLO5ME1V6Y9fz_QE-pEB2GXwpjdRyM_rpbEmnlqADgXirA3Jww1JmKZ2o_lFb286NIXcttLNm0ozcFYQVHIyHqLHnSGuOsYUaBogIXzGyjJvVs2T_5Z8iu5QQGgh-YWyQzSol417Bgirzp_HCfYP0iQlTw priority: 102 providerName: Unpaywall |
| Title | Revolutionizing diabetic eye disease detection: retinal image analysis with cutting-edge deep learning techniques |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39650355 https://www.proquest.com/docview/3146605410 http://doi.org/10.7717/peerj-cs.2186 https://doaj.org/article/9ee2da4249134371a181159b8d8f0ea1 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCF96OwVAYhOIWtX43DrYu2LEhUq0Kl5WQ5jr0q2k27TQJafj0ziVu1QoILxyTOwzNjzzfO-BtCXvHAcq2dSJRlOpHChkT73CYpl0Exl0LIgpuTP0-GxzP56VSdbpX6wpywjh64E9xB5j0vrIQogQkpUgaPBBCT5brQYeBtG_gMdLYVTHX7g3EqyDpSzRRCloOl96vviaveYhGmHSfUcvX_OSNvuaSbTbm0Vz_t-fmW7xnfJbcjaKSj7mPvkWu-vE_urAsy0Dg-H5DLqf8RTWn-C3wS7VZW5476K0_jvxha-LrNvyrfUdzCiE-eX8C0Qm0kKKG4OEtd06ZEJ7jgBvf4JY0VJs7ohvi1ekhm46Ov74-TWFMhcVKpGhShA0R8WV5oHjJuCzXINaC0oRbMKWEhYnKZFAFrGoEzF045rXM1LLiyPrNKPCJ75aL0TwiFkwBPhtbCdC8LQJpSBal8AcrhzAfWI6_XQjbLjjrDQMiB2jCtNoyrDGqjRw5RBZtGyHjdngA7MNEOzL_soEdeogINclqUmDRzZpuqMh-_TM0I-pECdBXwpjexUVjUK-ts3IMAHUIarJ2W-zstYdC5ncsv1nZi8BJmqpV-0VRGgOuBEFGyQY887gxo0zGRgaQB4MFnbCzq76J5-j9E84zc4gDFMMuFi32yV68a_xygVJ33yXU9_tAnNw6PJifTfjuG4Gg2ORl9-w1dliC6 |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvG98rDGQQgqeU-iuxeSto00BiQoNK48lyHHsqjLQ0CWj76zknTtWq0sRrfPnw-ez7nXP-HUKvqCe5lJYlwhCZcGZ8Il1ukoxyL4jNIGQJh5M_n6YnU_7pXJzvoL6i4Nrv-wwCjbcL55Y_EluNQumkW2g3FYC4B2h3evpl8r2tG5eliVCKdvSZ2_dsuJuWlX977V1zPrebcmGu_prLyzUvc7yPjvqzOl1yyc9RU-cje71N3XhjB-6ivQgz8aSzi3tox5X30X5fwgHHGf0A_T5zf6Lxza7Bi-FuL3ZmsbtyOP69wYWr24yt8h0Ohx7Dk2e_YCHCJlKa4LCdi23TJlEnYYsO7nELHGtSXOAVVWz1EE2Pj759OEliFYbEciFqGDrpIUZUeSGpV9QUYpxLwHWpZMQKZiDGsoozH6oggftnVlgpc5EWVBinjGCP0KCcl-4AYbgIgCY1BhwELwCbcuG5cIVQOSXOkyF63Q-WXnRkGxqClKBI3SpS20oHRQ7R-zCUK6HAkd1eANXrOOW0co4WhkN8SRhnGQFjBPircllIP3YG3vYyGIIOLBhlSLO5ME1V6Y9fz_QE-pEB2GXwpjdRyM_rpbEmnlqADgXirA3Jww1JmKZ2o_lFb286NIXcttLNm0ozcFYQVHIyHqLHnSGuOsYUaBogIXzGyjJvVs2T_5Z8iu5QQGgh-YWyQzSol417Bgirzp_HCfYP0iQlTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+diabetic+eye+disease+detection%3A+retinal+image+analysis+with+cutting-edge+deep+learning+techniques&rft.jtitle=PeerJ.+Computer+science&rft.au=D%2C+Banumathy&rft.au=Angamuthu%2C+Swathi&rft.au=Balaji%2C+Prasanalakshmi&rft.au=Ajay+Chaurasia%2C+Mousmi&rft.date=2024-09-23&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2186&rft_id=info:doi/10.7717%2Fpeerj-cs.2186&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |