Revolutionizing diabetic eye disease detection: retinal image analysis with cutting-edge deep learning techniques

Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectio...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e2186
Main Authors D, Banumathy, Angamuthu, Swathi, Balaji, Prasanalakshmi, Ajay Chaurasia, Mousmi
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 23.09.2024
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.2186

Cover

More Information
Summary:Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing the critical need for early diagnosis and intervention. This research explores the application of deep learning for automated glaucoma diagnosis using retinal fundus photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature derived from optical coherence tomography (OCT) images to enhance existing diagnostic procedures. Our approach leverages deep learning to automatically detect key optic disc characteristics, eliminating the need for manual feature engineering. The deep learning classifier then categorizes images as normal or abnormal, streamlining the diagnostic process. Deep learning techniques have proven effective in classifying and segmenting retinal fundus images, enabling the analysis of a growing number of images. This study introduces a novel mixed loss function that combines the strengths of focal loss and correntropy loss to handle complex biomedical data with class imbalance and outliers, particularly in OCT images. We further refine a multi-task deep learning model that capitalizes on similarities across major eye-fundus activities and metrics for glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%, and 99.2%, respectively, surpassing state-of-the-art methods. These promising results underscore the potential of our deep learning algorithm for automated glaucoma diagnosis, with significant implications for clinical applications. By simultaneously addressing segmentation and classification challenges, our approach demonstrates its effectiveness in accurately identifying ocular diseases, paving the way for improved glaucoma diagnosis and early intervention.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.2186