A contact algorithm for 3D discrete and finite element contact problems based on penalty function method

A contact algorithm in the context of the combined discrete element (DE) and finite element (FE) method is proposed. The algorithm, which is based on the node-to-surface method used in finite element method, treats each spherical discrete element as a slave node and the surfaces of the finite elemen...

Full description

Saved in:
Bibliographic Details
Published inComputational mechanics Vol. 48; no. 5; pp. 541 - 550
Main Authors Zang, Mengyan, Gao, Wei, Lei, Zhou
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.11.2011
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-7675
1432-0924
DOI10.1007/s00466-011-0606-5

Cover

More Information
Summary:A contact algorithm in the context of the combined discrete element (DE) and finite element (FE) method is proposed. The algorithm, which is based on the node-to-surface method used in finite element method, treats each spherical discrete element as a slave node and the surfaces of the finite element domain as the master surfaces. The contact force on the contact interface is processed by using a penalty function method. Afterward, a modification of the combined DE/FE method is proposed. Following that, the corresponding numerical code is implemented into the in-house developed code. To test the accuracy of the proposed algorithm, the impact between two identical bars and the vibration process of a laminated glass plate under impact of elastic sphere are simulated in elastic range. By comparing the results with the analytical solution and/or that calculated by using LS-DYNA, it is found that they agree with each other very well. The accuracy of the algorithm proposed in this paper is proved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-011-0606-5