Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes

Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 110; no. 1; pp. 71 - 91
Main Authors Lansdon, Lisa A., Dickinson, Amanda, Arlis, Sydney, Liu, Huan, Hlas, Arman, Hahn, Alyssa, Bonde, Greg, Long, Abby, Standley, Jennifer, Tyryshkina, Anastasia, Wehby, George, Lee, Nanette R., Daack-Hirsch, Sandra, Mohlke, Karen, Girirajan, Santhosh, Darbro, Benjamin W., Cornell, Robert A., Houston, Douglas W., Murray, Jeffrey C., Manak, J. Robert
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.01.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0002-9297
1537-6605
1537-6605
DOI10.1016/j.ajhg.2022.11.012

Cover

More Information
Summary:Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders. The contribution of copy-number variants to cleft lip with or without cleft palate (CL/P) has been relatively understudied. Using a strategy to identify likely higher effect size microdeletions, we identify COBLL1, RIC1, and ARHGEF38 as genes associated with CL/P that play important roles in vertebrate craniofacial development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9297
1537-6605
1537-6605
DOI:10.1016/j.ajhg.2022.11.012