Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways
Timely reperfusion in acute myocardial infarction has improved clinical outcomes but the benefits are partially offset by ischemia-reperfusion injury (I/R). MiRNA regulates mRNA of multiple effectors within injury and survival cell signaling pathways. We have previously reported the protective effec...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 474; no. 1; pp. 168 - 174 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-291X 1090-2104 1090-2104 |
DOI | 10.1016/j.bbrc.2016.04.090 |
Cover
Summary: | Timely reperfusion in acute myocardial infarction has improved clinical outcomes but the benefits are partially offset by ischemia-reperfusion injury (I/R). MiRNA regulates mRNA of multiple effectors within injury and survival cell signaling pathways. We have previously reported the protective effects of miRNA-221 in I/R injury. The purpose of this study was to explore the mechanisms underlying cardioprotection of miR-221. Myoblast H9c2 and neonatal rat ventricular myocytes (NRVM) were subjected to 0.2% O2 hypoxia followed by 2 h of re-oxygenation (H/R). In gain-and-loss function studies through transfections of miR-221 mimic (miR-221) and inhibitor (miR-221-i), the protective effects of miR-221 were confirmed as assessed by increased cell metabolic activity (WST-1) and decreased LDH release. Autophagy was assessed by GFP-LC3 labeling of autophagosome formation, LC3 and p62 measurements. Co-immuno-precipitation and specific gene cloning and function were used to identify the pathways underpinning miR-221 effects. MiR-221 significantly reduced H/R injury in association with inhibition of autophagy. Underlying mechanisms include (1) down-regulation of Ddit4 (disinhibiting the mTORC1/p-4EBP1 pathway) which inhibits autophagosome formation (2) down-regulation of Tp53inp1 (with reduced Tp53inp1/p62 complex formation) which inhibits autophagosome degradation. In conclusion, miRNA-221 exerts cytoprotective effects in hypoxia-reoxygenation injury in association with alterations in autophagic cell injury. Mir-221 may constitute is a novel therapeutic target in the treatment of cardiac I/R injury.
[Display omitted]
•miRNA-221 exerts cytoprotective effects in hypoxia-reoxygenation injury (H/R).•The protective effects are due to the inhibition of H/R-induced autophagy.•The inhibition of autophagy is through regulating Ddit4/mTORC1 and Tp53inp1/p62. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-291X 1090-2104 1090-2104 |
DOI: | 10.1016/j.bbrc.2016.04.090 |