Eco-epidemiology of Novel Bartonella Genotypes from Parasitic Flies of Insectivorous Bats

Bats are important zoonotic reservoirs for many pathogens worldwide. Although their highly specialized ectoparasites, bat flies (Diptera: Hippoboscoidea), can transmit Bartonella bacteria including human pathogens, their eco-epidemiology is unexplored. Here, we analyzed the prevalence and diversity...

Full description

Saved in:
Bibliographic Details
Published inMicrobial ecology Vol. 76; no. 4; pp. 1076 - 1088
Main Authors Sándor, Attila D., Földvári, Mihály, Krawczyk, Aleksandra I., Sprong, Hein, Corduneanu, Alexandra, Barti, Levente, Görföl, Tamás, Estók, Péter, Kováts, Dávid, Szekeres, Sándor, László, Zoltán, Hornok, Sándor, Földvári, Gábor
Format Journal Article
LanguageEnglish
Published New York Springer Science + Business Media 01.11.2018
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0095-3628
1432-184X
1432-184X
DOI10.1007/s00248-018-1195-z

Cover

More Information
Summary:Bats are important zoonotic reservoirs for many pathogens worldwide. Although their highly specialized ectoparasites, bat flies (Diptera: Hippoboscoidea), can transmit Bartonella bacteria including human pathogens, their eco-epidemiology is unexplored. Here, we analyzed the prevalence and diversity of Bartonella strains sampled from 10 bat fly species from 14 European bat species. We found high prevalence of Bartonella spp. in most bat fly species with wide geographical distribution. Bat species explained most of the variance in Bartonella distribution with the highest prevalence of infected flies recorded in species living in dense groups exclusively in caves. Bat gender but not bat fly gender was also an important factor with the more mobile male bats giving more opportunity for the ectoparasites to access several host individuals. We detected high diversity of Bartonella strains (18 sequences, 7 genotypes, in 9 bat fly species) comparable with tropical assemblages of bat-bat fly association. Most genotypes are novel (15 out of 18 recorded strains have a similarity of 92–99%, with three sequences having 100% similarity to Bartonella spp. sequences deposited in GenBank) with currently unknown pathogenicity; however, 4 of these sequences are similar (up to 92 % sequence similarity) to Bartonella spp. with known zoonotic potential. The high prevalence and diversity of Bartonella spp. suggests a long shared evolution of these bacteria with bat flies and bats providing excellent study targets for the eco-epidemiology of host-vector-pathogen cycles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0095-3628
1432-184X
1432-184X
DOI:10.1007/s00248-018-1195-z