dGTP-dependent processivity and possible template switching of Euplotes telomerase
We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (∼3 repeats) was observed at ∼100 µM of each dNTP. Processivity decreased as the dNTP concentrations were red...
Saved in:
Published in | Nucleic acids research Vol. 25; no. 18; pp. 3698 - 3704 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.09.1997
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 |
DOI | 10.1093/nar/25.18.3698 |
Cover
Abstract | We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (∼3 repeats) was observed at ∼100 µM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations ≤16 µM, while at ≥250 µM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42–49 at low dGTP concentrations and nt 36–43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity. |
---|---|
AbstractList | We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity. We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity. We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity ( similar to 3 repeats) was observed at similar to 100 mu M of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations less than or equal to 16 mu M, while at greater than or equal to 250 mu M an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity. We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (∼3 repeats) was observed at ∼100 µM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations ≤16 µM, while at ≥250 µM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42–49 at low dGTP concentrations and nt 36–43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity. |
Author | Cech, Thomas R. Hammond, Philip W. |
AuthorAffiliation | Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA |
AuthorAffiliation_xml | – name: Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA |
Author_xml | – sequence: 1 givenname: Philip W. surname: Hammond fullname: Hammond, Philip W. organization: Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA – sequence: 2 givenname: Thomas R. surname: Cech fullname: Cech, Thomas R. email: thomas.cech@colorado.edu organization: Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9278493$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEcxYNU6rZ69SbMydtsk8nvgwdZ2q2woMgq4iVkMt9pozOTMclW-9-bZdeigngK4b3Pl8d7Z-hkChMg9JzgJcGaXkw2XjR8SdSSCq0eoQWhoqmZFs0JWmCKeU0wU0_QWUpfMCaMcHaKTnUjFdN0gd536-27uoMZpg6mXM0xOEjJ3_l8X9mpq-ZQfu0AVYZxHmyGKn332d366aYKfXW5m4eQIRV5CCNEm-ApetzbIcGz43uOPlxdblfX9ebt-s3q9aZ2jNNct7LvBGYY20YwannvZIuJ6plWAmjvoFHSaqd5i4EoLalUVjJnqewkF7il5-jV4e68a0foXIkf7WDm6Ecb702w3vypTP7W3IQ7Q5jQXBb-5ZGP4dsOUjajTw6GwU4QdslI3XAqmPqvkYgyBBe6GF_8nughyrHtorOD7mJpNUJvnM82-7DP5wdDsNlvasqmpuGGKLPftGDLv7Bfh_8J1AfApww_Htw2fjWi9MjN9afPZiXWWyxWH82G_gSSBLVH |
CitedBy_id | crossref_primary_10_1016_S1367_5931_99_00011_3 crossref_primary_10_1074_jbc_M005158200 crossref_primary_10_1128_MCB_20_18_6806_6815_2000 crossref_primary_10_15252_embj_201797953 crossref_primary_10_1074_jbc_M003246200 crossref_primary_10_1534_genetics_112_149120 crossref_primary_10_1016_j_biosystems_2009_06_004 crossref_primary_10_1146_annurev_biochem_68_1_187 crossref_primary_10_1007_s00216_021_03823_5 crossref_primary_10_1021_acsami_0c13925 crossref_primary_10_1534_genetics_119_302713 crossref_primary_10_1074_jbc_M114_607101 crossref_primary_10_1039_C6AN01350C crossref_primary_10_1074_jbc_M502212200 crossref_primary_10_1101_gad_12_18_2921 crossref_primary_10_1021_acs_analchem_6b04883 crossref_primary_10_1006_bioo_2000_1194 crossref_primary_10_1016_j_bcp_2005_06_007 crossref_primary_10_1128_MCB_00853_09 crossref_primary_10_1021_acs_analchem_7b01529 crossref_primary_10_1073_pnas_0504744102 crossref_primary_10_1021_ac502538w crossref_primary_10_1093_nar_gkab942 crossref_primary_10_1021_ja406532e crossref_primary_10_1261_rna_7400704 crossref_primary_10_1016_S1097_2765_03_00232_6 crossref_primary_10_1007_s11103_005_5091_9 crossref_primary_10_1039_D1CC00455G crossref_primary_10_1016_S0304_3835_02_00701_2 crossref_primary_10_1073_pnas_1814777116 crossref_primary_10_1038_s41588_023_01339_5 crossref_primary_10_1073_pnas_95_15_8485 crossref_primary_10_1128_MCB_21_21_7277_7286_2001 |
Cites_doi | 10.1016/0092-8674(91)90077-C 10.1093/nar/16.14.6953 10.1038/353454a0 10.1038/344126a0 10.1126/science.7545955 10.1101/gad.8.16.1984 10.1128/MCB.11.9.4572 10.1128/MCB.14.12.7827 10.1038/353451a0 10.1126/science.275.5302.973 10.1128/MCB.13.10.6586 10.1016/0092-8674(87)90576-9 10.1101/gad.3.5.585 10.1146/annurev.ge.20.120186.002441 10.1038/337331a0 10.1038/350569a0 10.1126/science.276.5312.561 10.1016/S0092-8674(00)81933-9 10.1073/pnas.93.20.10712 10.1128/MCB.17.1.296 10.1038/376403a0 10.1093/nar/22.6.893 10.1016/0092-8674(95)90529-4 10.1093/genetics/144.4.1399 10.1016/0092-8674(93)90493-A 10.1093/emboj/16.9.2507 10.1101/gad.7.7b.1364 10.1128/MCB.16.7.3437 10.1016/0092-8674(86)90442-3 10.1016/0092-8674(84)90054-0 10.1101/gad.8.5.563 10.1101/gad.9.18.2227 10.1126/science.7545310 10.1007/BF00329546 10.1126/science.270.5242.1601 10.1016/0092-8674(91)90186-3 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM M7N 7X8 5PM |
DOI | 10.1093/nar/25.18.3698 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 3704 |
ExternalDocumentID | PMC146957 9278493 10_1093_nar_25_18_3698 ark_67375_HXZ_C6GT06CV_L |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM28039 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BSCLL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION AAPPN ABQTQ ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M49 M~E NPM PKN ROX 7TM M7N 7X8 5PM |
ID | FETCH-LOGICAL-c453t-b7fd60400a2643a5fc7b018f4986e3fce287a9c95b0e1897378a74ca37d7560b3 |
ISSN | 0305-1048 |
IngestDate | Thu Aug 21 14:04:54 EDT 2025 Sat Sep 27 19:12:52 EDT 2025 Sun Sep 28 06:57:29 EDT 2025 Wed Feb 19 02:32:38 EST 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 01:56:53 EDT 2025 Sat Sep 20 11:01:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-b7fd60400a2643a5fc7b018f4986e3fce287a9c95b0e1897378a74ca37d7560b3 |
Notes | istex:E2ECAAEF6C84F683758BF0C219AB944E778DB2EB Present address: Mosaic Technologies, Inc., 1106 Commonwealth Avenue, Boston, MA 02215, USA ark:/67375/HXZ-C6GT06CV-L ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/nar/article-pdf/25/18/3698/6291371/25-18-3698.pdf |
PMID | 9278493 |
PQID | 16093569 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_146957 proquest_miscellaneous_79253648 proquest_miscellaneous_16093569 pubmed_primary_9278493 crossref_citationtrail_10_1093_nar_25_18_3698 crossref_primary_10_1093_nar_25_18_3698 istex_primary_ark_67375_HXZ_C6GT06CV_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-09-15 |
PublicationDateYYYYMMDD | 1997-09-15 |
PublicationDate_xml | – month: 09 year: 1997 text: 1997-09-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Research |
PublicationYear | 1997 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Nakayama (13_16729743) 1997; 88 (27_37724319) 1980; 77 Lingner (15_16762056) 1997; 276 Harrington (12_16682526) 1997; 275 Lingner (23_15658849) 1994; 8 Gottschling (3_13959256) 1986; 47 Hammond (25_16666575) 1997; 17 Strahl (28_15461192) 1994; 22 Zakian (2_16110421) 1995; 270 Romero (22_9587008) 1991; 67 Klobutcher (35_13179729) 1984; 36 Yu (18_5561777) 1990; 344 (16_35824978) 1996; 144 Yu (33_9614361) 1991; 67 Lee (38_14476568) 1993; 13 Melek (29_15670167) 1994; 14 Bednenko (39_23295010) 1997; 16 Greider (24_9549594) 1991; 11 Blackburn (9_14056771) 1986; 20 Autexier (19_15624455) 1994; 8 Autexier (30_16031317) 1995; 9 Lingner (14_16446699) 1996; 93 Sandell (4_14518840) 1993; 75 Harrington (8_9578931) 1991; 353 McEachern (6_15961364) 1995; 376 Blackburn (1_9434888) 1991; 350 Morin (7_9578932) 1991; 353 Greider (17_5110125) 1989; 337 Collins (26_10294428) 1993; 7 Baird (34_5310190) 1989; 3 Singer (20_15638372) 1994; 266 Greider (21_14333760) 1987; 51 Zahler (31_4985527) 1988; 16 Melek (36_16256944) 1996; 16 Collins (11_15897581) 1995; 81 Lingner (32_16001376) 1995; 269 |
References_xml | – volume: 67 start-page: 823 issn: 0092-8674 issue: 4 year: 1991 ident: 33_9614361 publication-title: Cell doi: 10.1016/0092-8674(91)90077-C – volume: 16 start-page: 6953 issn: 0305-1048 issue: 14 year: 1988 ident: 31_4985527 publication-title: Nucleic Acids Research doi: 10.1093/nar/16.14.6953 – volume: 353 start-page: 454 issn: 1476-4687 issue: 6343 year: 1991 ident: 7_9578932 publication-title: Nature; Physical Science (London) doi: 10.1038/353454a0 – volume: 344 start-page: 126 issn: 1476-4687 issue: 6262 year: 1990 ident: 18_5561777 publication-title: Nature; Physical Science (London) doi: 10.1038/344126a0 – volume: 266 start-page: 404 issn: 0036-8075 issue: 5184 year: 1994 ident: 20_15638372 publication-title: Science doi: 10.1126/science.7545955 – volume: 8 start-page: 1984 issn: 0890-9369 issue: 16 year: 1994 ident: 23_15658849 publication-title: Genes & Development doi: 10.1101/gad.8.16.1984 – volume: 11 start-page: 4572 issn: 0270-7306 issue: 9 year: 1991 ident: 24_9549594 publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.11.9.4572 – volume: 14 start-page: 7827 issn: 0270-7306 issue: 12 year: 1994 ident: 29_15670167 publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.14.12.7827 – volume: 353 start-page: 451 issn: 1476-4687 issue: 6343 year: 1991 ident: 8_9578931 publication-title: Nature; Physical Science (London) doi: 10.1038/353451a0 – volume: 275 start-page: 973 issn: 0036-8075 issue: 5302 year: 1997 ident: 12_16682526 publication-title: Science doi: 10.1126/science.275.5302.973 – volume: 13 start-page: 6586 issn: 0270-7306 issue: 10 year: 1993 ident: 38_14476568 publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.13.10.6586 – volume: 51 start-page: 887 issn: 0092-8674 issue: 6 year: 1987 ident: 21_14333760 publication-title: Cell doi: 10.1016/0092-8674(87)90576-9 – volume: 3 start-page: 585 issn: 0890-9369 issue: 5 year: 1989 ident: 34_5310190 publication-title: Genes & Development doi: 10.1101/gad.3.5.585 – volume: 20 start-page: 501 issn: 0066-4197 issue: 1 year: 1986 ident: 9_14056771 publication-title: Annual review of genetics doi: 10.1146/annurev.ge.20.120186.002441 – volume: 337 start-page: 331 issn: 1476-4687 issue: 6205 year: 1989 ident: 17_5110125 publication-title: Nature; Physical Science (London) doi: 10.1038/337331a0 – volume: 350 start-page: 569 issn: 1476-4687 issue: 6319 year: 1991 ident: 1_9434888 publication-title: Nature; Physical Science (London) doi: 10.1038/350569a0 – volume: 276 start-page: 561 issn: 0036-8075 issue: 5312 year: 1997 ident: 15_16762056 publication-title: Science doi: 10.1126/science.276.5312.561 – volume: 88 start-page: 875 issn: 0092-8674 issue: 6 year: 1997 ident: 13_16729743 publication-title: Cell doi: 10.1016/S0092-8674(00)81933-9 – volume: 93 start-page: 10712 issn: 0027-8424 issue: 20 year: 1996 ident: 14_16446699 publication-title: PNAS doi: 10.1073/pnas.93.20.10712 – volume: 17 start-page: 296 issn: 0270-7306 issue: 1 year: 1997 ident: 25_16666575 publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.17.1.296 – volume: 376 start-page: 403 issn: 1476-4687 issue: 6539 year: 1995 ident: 6_15961364 publication-title: Nature; Physical Science (London) doi: 10.1038/376403a0 – volume: 22 start-page: 893 issn: 0305-1048 issue: 6 year: 1994 ident: 28_15461192 publication-title: Nucleic Acids Research doi: 10.1093/nar/22.6.893 – volume: 81 start-page: 677 issn: 0092-8674 issue: 5 year: 1995 ident: 11_15897581 publication-title: Cell doi: 10.1016/0092-8674(95)90529-4 – volume: 144 start-page: 1399 issn: 1943-2631 year: 1996 ident: 16_35824978 doi: 10.1093/genetics/144.4.1399 – volume: 75 start-page: 729 issn: 0092-8674 issue: 4 year: 1993 ident: 4_14518840 publication-title: Cell doi: 10.1016/0092-8674(93)90493-A – volume: 16 start-page: 2507 issn: 0261-4189 issue: 9 year: 1997 ident: 39_23295010 publication-title: The EMBO Journal doi: 10.1093/emboj/16.9.2507 – volume: 7 start-page: 1364 issn: 0890-9369 issue: 7b year: 1993 ident: 26_10294428 publication-title: Genes & Development doi: 10.1101/gad.7.7b.1364 – volume: 16 start-page: 3437 issn: 0270-7306 issue: 7 year: 1996 ident: 36_16256944 publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.16.7.3437 – volume: 47 start-page: 195 issn: 0092-8674 issue: 2 year: 1986 ident: 3_13959256 publication-title: Cell doi: 10.1016/0092-8674(86)90442-3 – volume: 36 start-page: 1045 issn: 0092-8674 issue: 4 year: 1984 ident: 35_13179729 publication-title: Cell doi: 10.1016/0092-8674(84)90054-0 – volume: 8 start-page: 563 issn: 0890-9369 issue: 5 year: 1994 ident: 19_15624455 publication-title: Genes & Development doi: 10.1101/gad.8.5.563 – volume: 9 start-page: 2227 issn: 0890-9369 issue: 18 year: 1995 ident: 30_16031317 publication-title: Genes & Development doi: 10.1101/gad.9.18.2227 – volume: 269 start-page: 1533 issn: 0036-8075 issue: 5230 year: 1995 ident: 32_16001376 publication-title: Science doi: 10.1126/science.7545310 – volume: 77 start-page: 217 issn: 1432-0886 year: 1980 ident: 27_37724319 doi: 10.1007/BF00329546 – volume: 270 start-page: 1601 issn: 0036-8075 issue: 5242 year: 1995 ident: 2_16110421 publication-title: Science doi: 10.1126/science.270.5242.1601 – volume: 67 start-page: 343 issn: 0092-8674 issue: 2 year: 1991 ident: 22_9587008 publication-title: Cell doi: 10.1016/0092-8674(91)90186-3 |
SSID | ssj0014154 |
Score | 1.7452813 |
Snippet | We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and... |
SourceID | pubmedcentral proquest pubmed crossref istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3698 |
SubjectTerms | Animals Binding Sites Deoxyguanine Nucleotides - genetics Deoxyguanine Nucleotides - metabolism Euplotes - genetics Euplotes aediculatus Telomerase - genetics Telomerase - metabolism Templates, Genetic |
Title | dGTP-dependent processivity and possible template switching of Euplotes telomerase |
URI | https://api.istex.fr/ark:/67375/HXZ-C6GT06CV-L/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/9278493 https://www.proquest.com/docview/16093569 https://www.proquest.com/docview/79253648 https://pubmed.ncbi.nlm.nih.gov/PMC146957 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLa29mF7mbZ21bKrH6buISINGNvwWEVJoynLqolM0V4sjI0ajUHUEO3y63eMgYSt1S4vCMHBRnzG-uxzzncQeq2kTylRgQNjSTq-J6kTpJo5imgW-MrQfrM18G7Opgv_7ZIud7U5q-ySUg6SHzfmlfwPqnANcDVZsv-AbNsoXIBzwBeOgDAc_wpjdRFdOk0Z27K_tkH_thxEJQBQmBGf6b4RoMqAVfY3X1eljZ4Ekqi366ww-66lzgqzObXpxAXNjdSxkXNNVso4F_b2veot77ok8WV_J9qrbWmpqA5EVHWCHTfBDzajssmjqrRJrf5lM0d6dH8sBHszHmG2ivRvU7GVqcpNmPjEowM3GDSmXdXr-XsxWcxmIhovo7vo0OPAgWBe4sNx6w0CkmFlwOo3a8U3yRm0f7ZrvUMuDs1_8u2mlcOvAbB7jCJ6iB7USwF8bnF9hO7o_Agdn-dxWXz5jk9xFZxbeT2O0L1RU5jvGH3owo73YccAO25gxw3suIUdFyluYMc72B-jxWQcjaZOXRrDSXxKSkfyVDEz_8ZAaElM04TLoRukfhgwTdJEw0I4DpOQyqF2g5ATHsTcT2LCFQeOK8kJOsiLXD9BmLsqdaVUrjSLa3iMx7FMFA1iCew-oT3kNN9UJLVuvClfkgkbv0AEYCA8KtxAGAx66E1rv7aKKbdanlYQtWbx9WcTZ8ipmC4_iRG7iIZs9FHMeuhVg6GAb21cWnGui-1GuMw48ll4uwUPPUqYD52dWMzb3kLjcw9JD7HOYGjvG-H17p18dVUJsAO7CCl_-sc-n6H7uz_sOToor7f6BXDYUr6sBvhPIx-ggQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dGTP-dependent+processivity+and+possible+template+switching+of+euplotes+telomerase&rft.jtitle=Nucleic+acids+research&rft.au=Hammond%2C+P+W&rft.au=Cech%2C+T+R&rft.date=1997-09-15&rft.issn=0305-1048&rft.volume=25&rft.issue=18&rft.spage=3698&rft_id=info:doi/10.1093%2Fnar%2F25.18.3698&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |