dGTP-dependent processivity and possible template switching of Euplotes telomerase

We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (∼3 repeats) was observed at ∼100 µM of each dNTP. Processivity decreased as the dNTP concentrations were red...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 25; no. 18; pp. 3698 - 3704
Main Authors Hammond, Philip W., Cech, Thomas R.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.09.1997
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
DOI10.1093/nar/25.18.3698

Cover

Abstract We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (∼3 repeats) was observed at ∼100 µM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations ≤16 µM, while at ≥250 µM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42–49 at low dGTP concentrations and nt 36–43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.
AbstractList We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.
We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.
We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity ( similar to 3 repeats) was observed at similar to 100 mu M of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations less than or equal to 16 mu M, while at greater than or equal to 250 mu M an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.
We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (∼3 repeats) was observed at ∼100 µM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations ≤16 µM, while at ≥250 µM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42–49 at low dGTP concentrations and nt 36–43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.
Author Cech, Thomas R.
Hammond, Philip W.
AuthorAffiliation Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA
AuthorAffiliation_xml – name: Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA
Author_xml – sequence: 1
  givenname: Philip W.
  surname: Hammond
  fullname: Hammond, Philip W.
  organization: Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA
– sequence: 2
  givenname: Thomas R.
  surname: Cech
  fullname: Cech, Thomas R.
  email: thomas.cech@colorado.edu
  organization: Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9278493$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEcxYNU6rZ69SbMydtsk8nvgwdZ2q2woMgq4iVkMt9pozOTMclW-9-bZdeigngK4b3Pl8d7Z-hkChMg9JzgJcGaXkw2XjR8SdSSCq0eoQWhoqmZFs0JWmCKeU0wU0_QWUpfMCaMcHaKTnUjFdN0gd536-27uoMZpg6mXM0xOEjJ3_l8X9mpq-ZQfu0AVYZxHmyGKn332d366aYKfXW5m4eQIRV5CCNEm-ApetzbIcGz43uOPlxdblfX9ebt-s3q9aZ2jNNct7LvBGYY20YwannvZIuJ6plWAmjvoFHSaqd5i4EoLalUVjJnqewkF7il5-jV4e68a0foXIkf7WDm6Ecb702w3vypTP7W3IQ7Q5jQXBb-5ZGP4dsOUjajTw6GwU4QdslI3XAqmPqvkYgyBBe6GF_8nughyrHtorOD7mJpNUJvnM82-7DP5wdDsNlvasqmpuGGKLPftGDLv7Bfh_8J1AfApww_Htw2fjWi9MjN9afPZiXWWyxWH82G_gSSBLVH
CitedBy_id crossref_primary_10_1016_S1367_5931_99_00011_3
crossref_primary_10_1074_jbc_M005158200
crossref_primary_10_1128_MCB_20_18_6806_6815_2000
crossref_primary_10_15252_embj_201797953
crossref_primary_10_1074_jbc_M003246200
crossref_primary_10_1534_genetics_112_149120
crossref_primary_10_1016_j_biosystems_2009_06_004
crossref_primary_10_1146_annurev_biochem_68_1_187
crossref_primary_10_1007_s00216_021_03823_5
crossref_primary_10_1021_acsami_0c13925
crossref_primary_10_1534_genetics_119_302713
crossref_primary_10_1074_jbc_M114_607101
crossref_primary_10_1039_C6AN01350C
crossref_primary_10_1074_jbc_M502212200
crossref_primary_10_1101_gad_12_18_2921
crossref_primary_10_1021_acs_analchem_6b04883
crossref_primary_10_1006_bioo_2000_1194
crossref_primary_10_1016_j_bcp_2005_06_007
crossref_primary_10_1128_MCB_00853_09
crossref_primary_10_1021_acs_analchem_7b01529
crossref_primary_10_1073_pnas_0504744102
crossref_primary_10_1021_ac502538w
crossref_primary_10_1093_nar_gkab942
crossref_primary_10_1021_ja406532e
crossref_primary_10_1261_rna_7400704
crossref_primary_10_1016_S1097_2765_03_00232_6
crossref_primary_10_1007_s11103_005_5091_9
crossref_primary_10_1039_D1CC00455G
crossref_primary_10_1016_S0304_3835_02_00701_2
crossref_primary_10_1073_pnas_1814777116
crossref_primary_10_1038_s41588_023_01339_5
crossref_primary_10_1073_pnas_95_15_8485
crossref_primary_10_1128_MCB_21_21_7277_7286_2001
Cites_doi 10.1016/0092-8674(91)90077-C
10.1093/nar/16.14.6953
10.1038/353454a0
10.1038/344126a0
10.1126/science.7545955
10.1101/gad.8.16.1984
10.1128/MCB.11.9.4572
10.1128/MCB.14.12.7827
10.1038/353451a0
10.1126/science.275.5302.973
10.1128/MCB.13.10.6586
10.1016/0092-8674(87)90576-9
10.1101/gad.3.5.585
10.1146/annurev.ge.20.120186.002441
10.1038/337331a0
10.1038/350569a0
10.1126/science.276.5312.561
10.1016/S0092-8674(00)81933-9
10.1073/pnas.93.20.10712
10.1128/MCB.17.1.296
10.1038/376403a0
10.1093/nar/22.6.893
10.1016/0092-8674(95)90529-4
10.1093/genetics/144.4.1399
10.1016/0092-8674(93)90493-A
10.1093/emboj/16.9.2507
10.1101/gad.7.7b.1364
10.1128/MCB.16.7.3437
10.1016/0092-8674(86)90442-3
10.1016/0092-8674(84)90054-0
10.1101/gad.8.5.563
10.1101/gad.9.18.2227
10.1126/science.7545310
10.1007/BF00329546
10.1126/science.270.5242.1601
10.1016/0092-8674(91)90186-3
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
M7N
7X8
5PM
DOI 10.1093/nar/25.18.3698
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Algology Mycology and Protozoology Abstracts (Microbiology C)


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 3704
ExternalDocumentID PMC146957
9278493
10_1093_nar_25_18_3698
ark_67375_HXZ_C6GT06CV_L
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM28039
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BSCLL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
AAPPN
ABQTQ
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M49
M~E
NPM
PKN
ROX
7TM
M7N
7X8
5PM
ID FETCH-LOGICAL-c453t-b7fd60400a2643a5fc7b018f4986e3fce287a9c95b0e1897378a74ca37d7560b3
ISSN 0305-1048
IngestDate Thu Aug 21 14:04:54 EDT 2025
Sat Sep 27 19:12:52 EDT 2025
Sun Sep 28 06:57:29 EDT 2025
Wed Feb 19 02:32:38 EST 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 01:56:53 EDT 2025
Sat Sep 20 11:01:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-b7fd60400a2643a5fc7b018f4986e3fce287a9c95b0e1897378a74ca37d7560b3
Notes istex:E2ECAAEF6C84F683758BF0C219AB944E778DB2EB
Present address: Mosaic Technologies, Inc., 1106 Commonwealth Avenue, Boston, MA 02215, USA
ark:/67375/HXZ-C6GT06CV-L
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/nar/article-pdf/25/18/3698/6291371/25-18-3698.pdf
PMID 9278493
PQID 16093569
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_146957
proquest_miscellaneous_79253648
proquest_miscellaneous_16093569
pubmed_primary_9278493
crossref_citationtrail_10_1093_nar_25_18_3698
crossref_primary_10_1093_nar_25_18_3698
istex_primary_ark_67375_HXZ_C6GT06CV_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-09-15
PublicationDateYYYYMMDD 1997-09-15
PublicationDate_xml – month: 09
  year: 1997
  text: 1997-09-15
  day: 15
PublicationDecade 1990
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Research
PublicationYear 1997
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Nakayama (13_16729743) 1997; 88
(27_37724319) 1980; 77
Lingner (15_16762056) 1997; 276
Harrington (12_16682526) 1997; 275
Lingner (23_15658849) 1994; 8
Gottschling (3_13959256) 1986; 47
Hammond (25_16666575) 1997; 17
Strahl (28_15461192) 1994; 22
Zakian (2_16110421) 1995; 270
Romero (22_9587008) 1991; 67
Klobutcher (35_13179729) 1984; 36
Yu (18_5561777) 1990; 344
(16_35824978) 1996; 144
Yu (33_9614361) 1991; 67
Lee (38_14476568) 1993; 13
Melek (29_15670167) 1994; 14
Bednenko (39_23295010) 1997; 16
Greider (24_9549594) 1991; 11
Blackburn (9_14056771) 1986; 20
Autexier (19_15624455) 1994; 8
Autexier (30_16031317) 1995; 9
Lingner (14_16446699) 1996; 93
Sandell (4_14518840) 1993; 75
Harrington (8_9578931) 1991; 353
McEachern (6_15961364) 1995; 376
Blackburn (1_9434888) 1991; 350
Morin (7_9578932) 1991; 353
Greider (17_5110125) 1989; 337
Collins (26_10294428) 1993; 7
Baird (34_5310190) 1989; 3
Singer (20_15638372) 1994; 266
Greider (21_14333760) 1987; 51
Zahler (31_4985527) 1988; 16
Melek (36_16256944) 1996; 16
Collins (11_15897581) 1995; 81
Lingner (32_16001376) 1995; 269
References_xml – volume: 67
  start-page: 823
  issn: 0092-8674
  issue: 4
  year: 1991
  ident: 33_9614361
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90077-C
– volume: 16
  start-page: 6953
  issn: 0305-1048
  issue: 14
  year: 1988
  ident: 31_4985527
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/16.14.6953
– volume: 353
  start-page: 454
  issn: 1476-4687
  issue: 6343
  year: 1991
  ident: 7_9578932
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/353454a0
– volume: 344
  start-page: 126
  issn: 1476-4687
  issue: 6262
  year: 1990
  ident: 18_5561777
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/344126a0
– volume: 266
  start-page: 404
  issn: 0036-8075
  issue: 5184
  year: 1994
  ident: 20_15638372
  publication-title: Science
  doi: 10.1126/science.7545955
– volume: 8
  start-page: 1984
  issn: 0890-9369
  issue: 16
  year: 1994
  ident: 23_15658849
  publication-title: Genes & Development
  doi: 10.1101/gad.8.16.1984
– volume: 11
  start-page: 4572
  issn: 0270-7306
  issue: 9
  year: 1991
  ident: 24_9549594
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.11.9.4572
– volume: 14
  start-page: 7827
  issn: 0270-7306
  issue: 12
  year: 1994
  ident: 29_15670167
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.14.12.7827
– volume: 353
  start-page: 451
  issn: 1476-4687
  issue: 6343
  year: 1991
  ident: 8_9578931
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/353451a0
– volume: 275
  start-page: 973
  issn: 0036-8075
  issue: 5302
  year: 1997
  ident: 12_16682526
  publication-title: Science
  doi: 10.1126/science.275.5302.973
– volume: 13
  start-page: 6586
  issn: 0270-7306
  issue: 10
  year: 1993
  ident: 38_14476568
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.13.10.6586
– volume: 51
  start-page: 887
  issn: 0092-8674
  issue: 6
  year: 1987
  ident: 21_14333760
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90576-9
– volume: 3
  start-page: 585
  issn: 0890-9369
  issue: 5
  year: 1989
  ident: 34_5310190
  publication-title: Genes & Development
  doi: 10.1101/gad.3.5.585
– volume: 20
  start-page: 501
  issn: 0066-4197
  issue: 1
  year: 1986
  ident: 9_14056771
  publication-title: Annual review of genetics
  doi: 10.1146/annurev.ge.20.120186.002441
– volume: 337
  start-page: 331
  issn: 1476-4687
  issue: 6205
  year: 1989
  ident: 17_5110125
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/337331a0
– volume: 350
  start-page: 569
  issn: 1476-4687
  issue: 6319
  year: 1991
  ident: 1_9434888
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/350569a0
– volume: 276
  start-page: 561
  issn: 0036-8075
  issue: 5312
  year: 1997
  ident: 15_16762056
  publication-title: Science
  doi: 10.1126/science.276.5312.561
– volume: 88
  start-page: 875
  issn: 0092-8674
  issue: 6
  year: 1997
  ident: 13_16729743
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81933-9
– volume: 93
  start-page: 10712
  issn: 0027-8424
  issue: 20
  year: 1996
  ident: 14_16446699
  publication-title: PNAS
  doi: 10.1073/pnas.93.20.10712
– volume: 17
  start-page: 296
  issn: 0270-7306
  issue: 1
  year: 1997
  ident: 25_16666575
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.17.1.296
– volume: 376
  start-page: 403
  issn: 1476-4687
  issue: 6539
  year: 1995
  ident: 6_15961364
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/376403a0
– volume: 22
  start-page: 893
  issn: 0305-1048
  issue: 6
  year: 1994
  ident: 28_15461192
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/22.6.893
– volume: 81
  start-page: 677
  issn: 0092-8674
  issue: 5
  year: 1995
  ident: 11_15897581
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90529-4
– volume: 144
  start-page: 1399
  issn: 1943-2631
  year: 1996
  ident: 16_35824978
  doi: 10.1093/genetics/144.4.1399
– volume: 75
  start-page: 729
  issn: 0092-8674
  issue: 4
  year: 1993
  ident: 4_14518840
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90493-A
– volume: 16
  start-page: 2507
  issn: 0261-4189
  issue: 9
  year: 1997
  ident: 39_23295010
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/16.9.2507
– volume: 7
  start-page: 1364
  issn: 0890-9369
  issue: 7b
  year: 1993
  ident: 26_10294428
  publication-title: Genes & Development
  doi: 10.1101/gad.7.7b.1364
– volume: 16
  start-page: 3437
  issn: 0270-7306
  issue: 7
  year: 1996
  ident: 36_16256944
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.16.7.3437
– volume: 47
  start-page: 195
  issn: 0092-8674
  issue: 2
  year: 1986
  ident: 3_13959256
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90442-3
– volume: 36
  start-page: 1045
  issn: 0092-8674
  issue: 4
  year: 1984
  ident: 35_13179729
  publication-title: Cell
  doi: 10.1016/0092-8674(84)90054-0
– volume: 8
  start-page: 563
  issn: 0890-9369
  issue: 5
  year: 1994
  ident: 19_15624455
  publication-title: Genes & Development
  doi: 10.1101/gad.8.5.563
– volume: 9
  start-page: 2227
  issn: 0890-9369
  issue: 18
  year: 1995
  ident: 30_16031317
  publication-title: Genes & Development
  doi: 10.1101/gad.9.18.2227
– volume: 269
  start-page: 1533
  issn: 0036-8075
  issue: 5230
  year: 1995
  ident: 32_16001376
  publication-title: Science
  doi: 10.1126/science.7545310
– volume: 77
  start-page: 217
  issn: 1432-0886
  year: 1980
  ident: 27_37724319
  doi: 10.1007/BF00329546
– volume: 270
  start-page: 1601
  issn: 0036-8075
  issue: 5242
  year: 1995
  ident: 2_16110421
  publication-title: Science
  doi: 10.1126/science.270.5242.1601
– volume: 67
  start-page: 343
  issn: 0092-8674
  issue: 2
  year: 1991
  ident: 22_9587008
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90186-3
SSID ssj0014154
Score 1.7452813
Snippet We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and...
SourceID pubmedcentral
proquest
pubmed
crossref
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3698
SubjectTerms Animals
Binding Sites
Deoxyguanine Nucleotides - genetics
Deoxyguanine Nucleotides - metabolism
Euplotes - genetics
Euplotes aediculatus
Telomerase - genetics
Telomerase - metabolism
Templates, Genetic
Title dGTP-dependent processivity and possible template switching of Euplotes telomerase
URI https://api.istex.fr/ark:/67375/HXZ-C6GT06CV-L/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/9278493
https://www.proquest.com/docview/16093569
https://www.proquest.com/docview/79253648
https://pubmed.ncbi.nlm.nih.gov/PMC146957
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLa29mF7mbZ21bKrH6buISINGNvwWEVJoynLqolM0V4sjI0ajUHUEO3y63eMgYSt1S4vCMHBRnzG-uxzzncQeq2kTylRgQNjSTq-J6kTpJo5imgW-MrQfrM18G7Opgv_7ZIud7U5q-ySUg6SHzfmlfwPqnANcDVZsv-AbNsoXIBzwBeOgDAc_wpjdRFdOk0Z27K_tkH_thxEJQBQmBGf6b4RoMqAVfY3X1eljZ4Ekqi366ww-66lzgqzObXpxAXNjdSxkXNNVso4F_b2veot77ok8WV_J9qrbWmpqA5EVHWCHTfBDzajssmjqrRJrf5lM0d6dH8sBHszHmG2ivRvU7GVqcpNmPjEowM3GDSmXdXr-XsxWcxmIhovo7vo0OPAgWBe4sNx6w0CkmFlwOo3a8U3yRm0f7ZrvUMuDs1_8u2mlcOvAbB7jCJ6iB7USwF8bnF9hO7o_Agdn-dxWXz5jk9xFZxbeT2O0L1RU5jvGH3owo73YccAO25gxw3suIUdFyluYMc72B-jxWQcjaZOXRrDSXxKSkfyVDEz_8ZAaElM04TLoRukfhgwTdJEw0I4DpOQyqF2g5ATHsTcT2LCFQeOK8kJOsiLXD9BmLsqdaVUrjSLa3iMx7FMFA1iCew-oT3kNN9UJLVuvClfkgkbv0AEYCA8KtxAGAx66E1rv7aKKbdanlYQtWbx9WcTZ8ipmC4_iRG7iIZs9FHMeuhVg6GAb21cWnGui-1GuMw48ll4uwUPPUqYD52dWMzb3kLjcw9JD7HOYGjvG-H17p18dVUJsAO7CCl_-sc-n6H7uz_sOToor7f6BXDYUr6sBvhPIx-ggQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dGTP-dependent+processivity+and+possible+template+switching+of+euplotes+telomerase&rft.jtitle=Nucleic+acids+research&rft.au=Hammond%2C+P+W&rft.au=Cech%2C+T+R&rft.date=1997-09-15&rft.issn=0305-1048&rft.volume=25&rft.issue=18&rft.spage=3698&rft_id=info:doi/10.1093%2Fnar%2F25.18.3698&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon