A multi-scale spatial–temporal capsule network based on sequence encoding for bearing fault diagnosis

The Capsule Network (CapsNet) has been shown to have significant advantages in improving the accuracy of bearing fault identification. Nevertheless, the CapsNet faces challenges in identifying the type of bearing fault under nonstationary and noisy conditions. These challenges arise from the distinc...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 10; no. 5; pp. 6189 - 6212
Main Authors Wang, Youming, Chen, Lisha
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2199-4536
2198-6053
2198-6053
DOI10.1007/s40747-024-01462-8

Cover

More Information
Summary:The Capsule Network (CapsNet) has been shown to have significant advantages in improving the accuracy of bearing fault identification. Nevertheless, the CapsNet faces challenges in identifying the type of bearing fault under nonstationary and noisy conditions. These challenges arise from the distinctive nature of its dynamic routing algorithm and the use of fixed single-scale kernels. To address these challenges, a multi-scale spatial–temporal capsule network (MSCN) based on sequence encoding is proposed for bearing fault identification under nonstationary and noisy environments. A spatial–temporal sequence encoding module focuses on feature correlations at various times and positions. Dilated convolution-based multiscale capsule layer (MCaps) is designed to capture spatial–temporal features at different scales. MCaps establishes connections between various layers, enhancing the comprehension and interpretation of spatial–temporal features. Furthermore, the Bhattacharyya coefficient is introduced into the dynamic routing to compare the similarity between capsules. The validity of the model is verified through comparative experiments, and the results show that MSCN has significant advantages over traditional methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2199-4536
2198-6053
2198-6053
DOI:10.1007/s40747-024-01462-8