AN ELECTRON-TRACKING COMPTON TELESCOPE FOR A SURVEY OF THE DEEP UNIVERSE BY MeV GAMMA-RAYS

ABSTRACT Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which originate from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The rec...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 810; no. 1; pp. 28 - 12
Main Authors Tanimori, T., Kubo, H., Takada, A., Iwaki, S., Komura, S., Kurosawa, S., Matsuoka, Y., Miuchi, K., Miyamoto, S., Mizumoto, T., Mizumura, Y., Nakamura, K., Nakamura, S., Oda, M., Parker, J. D., Sawano, T., Sonoda, S., Takemura, T., Tomono, D., Ueno, K.
Format Journal Article
LanguageEnglish
Published United States The American Astronomical Society 01.09.2015
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
1538-4357
DOI10.1088/0004-637X/810/1/28

Cover

More Information
Summary:ABSTRACT Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which originate from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The recent major mission/instrument in the MeV band, Compton Gamma Ray Observatory/COMPTEL, which was Compton Camera (CC), detected a mere ∼30 persistent sources. It is in stark contrast with the ∼2000 sources in the GeV band. Here we report the performance of an Electron-Tracking Compton Camera (ETCC), and prove that it has a good potential to break through this stagnation in MeV gamma-ray astronomy. The ETCC provides all the parameters of Compton-scattering by measuring 3D recoil electron tracks; then the Scatter Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx), which CCs cannot measure, is also obtained, and is found to be helpful to reduce the background under conditions similar to those in space. Accordingly, the significance in gamma detection is improved severalfold. On the other hand, SPD is essential to determine the point-spread function (PSF) quantitatively. The SPD resolution is improved close to the theoretical limit for multiple scattering of recoil electrons. With such a well-determined PSF, we demonstrate for the first time that it is possible to provide reliable sensitivity in Compton imaging without utilizing an optimization algorithm. As such, this study highlights the fundamental weak-points of CCs. In contrast we demonstrate the possibility of ETCC reaching the sensitivity below 1 × 10−12 erg cm−2 s−1 at 1 MeV.
Bibliography:Instrumentation And Computational Algorithms
LET32402
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0004-637X
1538-4357
1538-4357
DOI:10.1088/0004-637X/810/1/28