Feasibility Study of Mass Sports Fitness Program Based on Neural Network Algorithm

Mass sports has become a world trend, setting off a new health revolution in the world. Mass fitness programs not only enrich people's lives. It not only relieves the psychological pressure of modern people but also promotes people's health and improves people's quality of life. Accor...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 7
Main Authors Li, Jian, Wu, Yejin
Format Journal Article
LanguageEnglish
Published New York Hindawi 08.08.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/3639157

Cover

More Information
Summary:Mass sports has become a world trend, setting off a new health revolution in the world. Mass fitness programs not only enrich people's lives. It not only relieves the psychological pressure of modern people but also promotes people's health and improves people's quality of life. According to the time-consuming stability of neural network algorithm, this paper proposes a sports video recognition algorithm based on BP neural network. The static and dynamic features are classified by BP neural network, and the basic probability assignment is constructed according to the preliminary recognition results. At the same time, we use evidence theory to fuse the preliminary results and get the results of motion video recognition. It can be applied to the generation model of the feasible scheme of mass sports fitness. Relevant experiments show that the whole model that generates the feasible mass sports fitness scheme can accurately generate the sports fitness scheme of multiple patient users and ensure the rationality and safety of the sports fitness scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Vijay Kumar
ISSN:1687-5265
1687-5273
1687-5273
DOI:10.1155/2022/3639157