Approximation bounds for sparse principal component analysis
We produce approximation bounds on a semidefinite programming relaxation for sparse principal component analysis. The sparse maximum eigenvalue problem cannot be efficiently approximated up to a constant approximation ratio, so our bounds depend on the optimum value of the semidefinite relaxation: t...
Saved in:
| Published in | Mathematical programming Vol. 148; no. 1-2; pp. 89 - 110 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 |
| DOI | 10.1007/s10107-014-0751-7 |
Cover
| Summary: | We produce approximation bounds on a semidefinite programming relaxation for sparse principal component analysis. The sparse maximum eigenvalue problem cannot be efficiently approximated up to a constant approximation ratio, so our bounds depend on the optimum value of the semidefinite relaxation: the higher this value, the better the approximation. In particular, these bounds allow us to control approximation ratios for tractable statistics in hypothesis testing problems where data points are sampled from Gaussian models with a single sparse leading component. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-014-0751-7 |