Delays, Masks, the Elderly, and Schools: First Covid-19 Wave in the Czech Republic
Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological...
Saved in:
Published in | Bulletin of mathematical biology Vol. 84; no. 8; p. 75 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8240 1522-9602 1522-9602 |
DOI | 10.1007/s11538-022-01031-5 |
Cover
Abstract | Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic. |
---|---|
AbstractList | Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic.Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic. Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic. Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic. |
ArticleNumber | 75 |
Author | Smyčka, Jan Diviák, Tomáš Šoltés, Michal Šlerka, Josef Vidnerová, Petra Berec, Luděk Hromádková, Eva Zajíček, Milan Trnka, Jan Neruda, Roman Tuček, Vít Šmíd, Martin Levínský, René |
Author_xml | – sequence: 1 givenname: Luděk orcidid: 0000-0002-2419-3324 surname: Berec fullname: Berec, Luděk email: lberec@prf.jcu.cz organization: Department of Mathematics, Centre for Mathematical Biology, Faculty of Science, University of South Bohemia, Czech Academy of Sciences, Biology Centre, Institute of Entomology, Centre for Modelling of Biological and Social Processes – sequence: 2 givenname: Jan surname: Smyčka fullname: Smyčka, Jan organization: Center for Theoretical Studies – sequence: 3 givenname: René surname: Levínský fullname: Levínský, René organization: Centre for Modelling of Biological and Social Processes, CERGE-EI – sequence: 4 givenname: Eva surname: Hromádková fullname: Hromádková, Eva organization: CERGE-EI – sequence: 5 givenname: Michal surname: Šoltés fullname: Šoltés, Michal organization: CERGE-EI – sequence: 6 givenname: Josef surname: Šlerka fullname: Šlerka, Josef organization: Centre for Modelling of Biological and Social Processes, New Media Studies, Faculty of Arts, Charles University – sequence: 7 givenname: Vít surname: Tuček fullname: Tuček, Vít organization: Centre for Modelling of Biological and Social Processes, Department of Mathematics, University of Zagreb – sequence: 8 givenname: Jan surname: Trnka fullname: Trnka, Jan organization: Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University – sequence: 9 givenname: Martin surname: Šmíd fullname: Šmíd, Martin organization: Centre for Modelling of Biological and Social Processes, Czech Academy of Sciences, Institute of Information Theory and Automation – sequence: 10 givenname: Milan surname: Zajíček fullname: Zajíček, Milan organization: Centre for Modelling of Biological and Social Processes, Czech Academy of Sciences, Institute of Information Theory and Automation – sequence: 11 givenname: Tomáš surname: Diviák fullname: Diviák, Tomáš organization: Centre for Modelling of Biological and Social Processes, Department of Criminology, School of Social Sciences, University of Manchester – sequence: 12 givenname: Roman surname: Neruda fullname: Neruda, Roman organization: Centre for Modelling of Biological and Social Processes, Czech Academy of Sciences, Institute of Computer Science – sequence: 13 givenname: Petra surname: Vidnerová fullname: Vidnerová, Petra organization: Centre for Modelling of Biological and Social Processes, Czech Academy of Sciences, Institute of Computer Science |
BookMark | eNp9kU1rVDEYhYNU7LT6B1wF3Ljo1XzfxIUgY6uFitAPugy5SW4nNZPU5M7A-OvNdFrELrp6CTnPed_DOQB7KScPwFuMPmCE-o8VY05lhwjpEEYUd_wFmGHenkogsgdmCCnSScLQPjio9RY1SFH1CuxT3hOBejYD5199NJt6BH-Y-quNaeHhcXS-xM0RNMnBC7vIOdZP8CSUOsF5XgfXYQWvzdrDkO6B-R9vF_Dc362GGOxr8HI0sfo3D_MQXJ0cX86_d2c_v53Ov5x1lnE8dWocBkccH7ATTBhiHUfIDJKQcTROSsackI4YLqkfWwjqzKBYz6hCghI20EPweefb1i69sz5NxUR9V8LSlI3OJuj_f1JY6Ju81oog2WPSDN4_GJT8e-XrpJehWh-jST6vqiaiV4QKxViTvnsivc2rklq8rUrK1gcVTSV3KltyrcWP2obJTCFv94eoMdLb4vSuON2K0_fFad5Q8gR9zPEsRHdQbeJ048u_q56h_gKQzal0 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0287959 crossref_primary_10_1016_j_procs_2023_10_285 crossref_primary_10_31482_mmsl_2023_026 crossref_primary_10_1038_s41598_023_45788_8 crossref_primary_10_1016_j_epidem_2023_100677 |
Cites_doi | 10.1038/s41591-020-0962-9 10.15585/mmwr.mm6914e1 10.1016/S2215-0366(20)30308-4 10.1186/s12916-020-01872-8 10.1126/science.abe6959 10.1371/journal.pcbi.1005697 10.1016/S1473-3099(20)30144-4 10.1038/s41562-020-01009-0 10.1093/geronb/gbaa110 10.1093/ije/dyt088 10.1126/science.abb9789 10.1146/annurev-ecolsys-102209-144621 10.1038/s41586-020-2405-7 10.1016/j.tree.2010.04.001 10.1186/s12916-020-01698-4 10.1002/jmv.26041 10.1016/j.ijid.2020.07.052 10.2196/19367 10.1016/S2352-4642(20)30095-X 10.7326/M20-1260 10.1038/s41467-021-21899-6 10.1038/s41598-019-39714-0 10.1016/S2468-2667(20)30157-2 10.1126/sciadv.abd6370 10.1038/s41586-020-2923-3 10.1126/science.abd9338 10.1038/s41591-020-0883-7 10.1007/s00285-019-01356-1 10.1073/pnas.0902437106 10.1098/rspa.2020.0376 10.1371/journal.pcbi.1003583 10.1126/science.abb5793 10.1098/rsif.2008.0172 10.1126/science.abb3221 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Society for Mathematical Biology 2022 The Author(s), under exclusive licence to Society for Mathematical Biology 2022. 2022. The Author(s), under exclusive licence to Society for Mathematical Biology. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Society for Mathematical Biology 2022 – notice: The Author(s), under exclusive licence to Society for Mathematical Biology 2022. – notice: 2022. The Author(s), under exclusive licence to Society for Mathematical Biology. |
DBID | AAYXX CITATION 7SS 7TK JQ2 K9. 7X8 5PM |
DOI | 10.1007/s11538-022-01031-5 |
DatabaseName | CrossRef Entomology Abstracts (Full archive) Neurosciences Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Entomology Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1522-9602 |
ExternalDocumentID | PMC9208712 10_1007_s11538_022_01031_5 |
GeographicLocations | Czech Republic |
GeographicLocations_xml | – name: Czech Republic |
GrantInformation_xml | – fundername: Ministerstvo Školství, MládeŽe a TelovÝchovy grantid: CZ.02.1.01/0.0/0.0/16_013/0001740 funderid: http://dx.doi.org/10.13039/501100001823 – fundername: European Regional Development Fund grantid: KK.01.1.1.01.0004 funderid: http://dx.doi.org/10.13039/501100008530 – fundername: ; grantid: CZ.02.1.01/0.0/0.0/16_013/0001740 – fundername: ; grantid: KK.01.1.1.01.0004 |
GroupedDBID | --- --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 3V. 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACTN AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACZOJ ADBBV ADFGL ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AITUG AJBLW AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M0L M1P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R2- R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 Z7U Z83 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM AAPKM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIGII AIXLP AMVHM ATHPR AYFIA CITATION M2P PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7SS 7TK JQ2 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c451t-9fbbd2d5b1d646a2cd500ab822ffad8844d68d2a583ef8243dab94743906324b3 |
IEDL.DBID | AGYKE |
ISSN | 0092-8240 1522-9602 |
IngestDate | Thu Aug 21 14:23:53 EDT 2025 Fri Sep 05 12:08:23 EDT 2025 Wed Sep 17 23:58:48 EDT 2025 Wed Oct 01 03:09:45 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Fri Feb 21 02:45:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Covid-19 pandemic School closure Approximate Bayesian computation Age structure Non-pharmaceutical interventions |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-9fbbd2d5b1d646a2cd500ab822ffad8844d68d2a583ef8243dab94743906324b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2419-3324 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9208712 |
PMID | 35726074 |
PQID | 2678810036 |
PQPubID | 55445 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9208712 proquest_miscellaneous_2679236944 proquest_journals_2678810036 crossref_citationtrail_10_1007_s11538_022_01031_5 crossref_primary_10_1007_s11538_022_01031_5 springer_journals_10_1007_s11538_022_01031_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | A journal devoted to research at the interface of the life and mathematical sciences |
PublicationTitle | Bulletin of mathematical biology |
PublicationTitleAbbrev | Bull Math Biol |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Börsch-SupanAData resource profile: the survey of health, ageing and retirement in Europe (SHARE)Int J Epidemiol20134992100110.1093/ije/dyt088 LucianiFThe epidemiological fitness cost of drug resistance in Mycobacterium tuberculosisPNAS2009106147111471510.1073/pnas.0902437106 GiordanoGModelling the COVID-19 epidemic and implementation of population-wide interventions in ItalyNat Med20202685586610.1038/s41591-020-0883-7 YangWKarspeckAShamanJComparison of filtering methods for the modeling and retrospective forecasting of influenza epidemicsPLoS Comput Biol201410e100358310.1371/journal.pcbi.1003583 LiRSubstantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)Science202036848949310.1126/science.abb3221 ChenYEpidemiological characteristics of infection in COVID-19 close contacts in Ningbo cityChin J Epidemiol202041667671 WeiWEPresymptomatic transmission of SARS-CoV-2—Singapore, January 23-March 16, 2020Morb Mortal Wkly Rep20206941141510.15585/mmwr.mm6914e1 BubarKMModel-informed COVID-19 vaccine prioritization strategies by age and serostatusScience202137191610.1126/science.abe6959 Ministry of Health of the Czech Republic, (2020). COVID-19: an overview of the actual situation in the Czech Republic (in Czech). https://onemocneni-aktualne.mzcr.cz/covid-19. Accessed 20 Jan 2021 PremKCookARJitMProjecting social contact matrices in 152 countries using contact surveys and demographic dataPLoS Comput Biol201713e100569710.1371/journal.pcbi.1005697 FlaxmanSEstimating the effects of non-pharmaceutical interventions on COVID-19 in EuropeNature202058425726110.1038/s41586-020-2405-7 KrendlACPerryBLThe impact of sheltering in place during the COVID-19 pandemic on older adults’ social and mental well-beingJ Gerontol Ser B202176e53e5810.1093/geronb/gbaa110 BraunerJMInferring the effectiveness of government interventions against COVID-19Science2021371eabd933810.1126/science.abd9338 SmithHAn Introduction to Delay Differential Equations with Applications to the Life Sciences2010BerlinSpringer PierceMMental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK populationLancet Psychiatry2020788389210.1016/S2215-0366(20)30308-4 ToniTApproximate Bayesian computation scheme for parameter inference and model selection in dynamical systemsJ R Soc Interface2009618720210.1098/rsif.2008.0172 DehningJInferring change points in the spread of COVID-19 reveals the effectiveness of interventionsScience2020369eabb978910.1126/science.abb9789 LiuYThe impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territoriesBMC Med2021194010.1186/s12916-020-01872-8 YoungL-SAn SIQ delay differential model for disease control via isolationSci Rep20199350510.1038/s41598-019-39714-0 ChangSMobility network models of Covid-19 explain inequities and inform reopeningNature2021589710.1038/s41586-020-2923-3 KretzschmarMEImpact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling studyLancet Public Health20205E452E45910.1016/S2468-2667(20)30157-2 BlumMGTranVCHIV with contact tracing: a case study in approximate Bayesian computationBioinformatics2010116446601437.62399 EikenberrySETo mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemicInfect Dis Model20205293308 CsilléryKApproximate Bayesian computation (ABC) in practiceTrends Ecol Evol20102541041810.1016/j.tree.2010.04.001 Ferguson NM et al (2020) Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College- COVID19-NPI-modelling-16-03-2020.pdf Csilléry K et al (2015) ABC: tools for approximate Bayesian computation (ABC). https://cran.r-project.org/web/packages/abc/index.html KisslerSMProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic periodScience202036886086810.1126/science.abb5793 RuschelSAn SIQ delay differential model for disease control via isolationJ Math Biol201979249279397587410.1007/s00285-019-01356-1 DomenicoLDImpact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategiesBMC Med20201824010.1186/s12916-020-01698-4 BBC (2020) Covid-19 pandemic: Sweden reverses face mask guidelines for public transport. www.bbc.com/news/world-europe-55371102. Accessed 20 Jan 2021 PeiSKandulaSShamanJDifferential effects of intervention timing on COVID-19 spread in the United StatesSci Adv20206eabd637010.1126/sciadv.abd6370 BeaumontMAApproximate Bayesian computation in evolution and ecologyAnnu Rev Ecol Evol Syst20104137940610.1146/annurev-ecolsys-102209-144621 IwataKDoiAMiyakoshiCWas school closure effective in mitigating coronavirus disease 2019 (COVID-19)? Time series analysis using Bayesian inferenceInt J Infect Dis202099576110.1016/j.ijid.2020.07.052 KucharskiAJEarly dynamics of transmission and control of COVID-19: a mathematical modelling studyLancet Infect Dis20202055355810.1016/S1473-3099(20)30144-4 KomendaMComplex reporting of the COVID-19 epidemic in the Czech Republic: use of an interactive web-based app in practiceJ Med Internet Res202022e1936710.2196/19367 RozhnovaGModel-based evaluation of school- and non-school-related measures to control the COVID-19 pandemicNat Commun202112161410.1038/s41467-021-21899-6 HeWYiGYZhuYEstimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysisJ Med Virol2020922543255010.1002/jmv.26041 VinerRMSchool closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic reviewLancet Child Adolesc Health2020439740410.1016/S2352-4642(20)30095-X HaugNRanking the effectiveness of worldwide COVID-19 government interventionsNat Hum Behav202041303131210.1038/s41562-020-01009-0 DaviesNGAge-dependent effects in the transmission and control of COVID-19 epidemicsNat Med2020261205121110.1038/s41591-020-0962-9 StuttROJHA modelling framework to assess the likely effectiveness of facemasks in combination with ‘lock-down’ in managing the COVID-19 pandemicProc R Soc A202047620200376412648410.1098/rspa.2020.0376 WeissmanGELocally informed simulation to predict hospital capacity needs during the COVID-19 pandemicAnna Intern Med2020173212810.7326/M20-1260 JM Brauner (1031_CR5) 2021; 371 S Chang (1031_CR7) 2021; 589 K Prem (1031_CR32) 2017; 13 GE Weissman (1031_CR40) 2020; 173 SM Kissler (1031_CR21) 2020; 368 W Yang (1031_CR41) 2014; 10 1031_CR1 ME Kretzschmar (1031_CR24) 2020; 5 KM Bubar (1031_CR6) 2021; 371 M Pierce (1031_CR31) 2020; 7 G Rozhnova (1031_CR33) 2021; 12 M Komenda (1031_CR22) 2020; 22 S Pei (1031_CR30) 2020; 6 K Csilléry (1031_CR9) 2010; 25 A Börsch-Supan (1031_CR4) 2013; 4 L-S Young (1031_CR42) 2019; 9 Y Liu (1031_CR27) 2021; 19 H Smith (1031_CR35) 2010 MG Blum (1031_CR3) 2010; 11 1031_CR29 S Flaxman (1031_CR16) 2020; 584 K Iwata (1031_CR20) 2020; 99 W He (1031_CR19) 2020; 92 WE Wei (1031_CR39) 2020; 69 T Toni (1031_CR37) 2009; 6 MA Beaumont (1031_CR2) 2010; 41 LD Domenico (1031_CR13) 2020; 18 F Luciani (1031_CR28) 2009; 106 AJ Kucharski (1031_CR25) 2020; 20 1031_CR15 NG Davies (1031_CR11) 2020; 26 ROJH Stutt (1031_CR36) 2020; 476 N Haug (1031_CR18) 2020; 4 R Li (1031_CR26) 2020; 368 1031_CR10 SE Eikenberry (1031_CR14) 2020; 5 Y Chen (1031_CR8) 2020; 41 J Dehning (1031_CR12) 2020; 369 G Giordano (1031_CR17) 2020; 26 AC Krendl (1031_CR23) 2021; 76 S Ruschel (1031_CR34) 2019; 79 RM Viner (1031_CR38) 2020; 4 |
References_xml | – reference: FlaxmanSEstimating the effects of non-pharmaceutical interventions on COVID-19 in EuropeNature202058425726110.1038/s41586-020-2405-7 – reference: Ministry of Health of the Czech Republic, (2020). COVID-19: an overview of the actual situation in the Czech Republic (in Czech). https://onemocneni-aktualne.mzcr.cz/covid-19. Accessed 20 Jan 2021 – reference: RuschelSAn SIQ delay differential model for disease control via isolationJ Math Biol201979249279397587410.1007/s00285-019-01356-1 – reference: SmithHAn Introduction to Delay Differential Equations with Applications to the Life Sciences2010BerlinSpringer – reference: HeWYiGYZhuYEstimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysisJ Med Virol2020922543255010.1002/jmv.26041 – reference: RozhnovaGModel-based evaluation of school- and non-school-related measures to control the COVID-19 pandemicNat Commun202112161410.1038/s41467-021-21899-6 – reference: StuttROJHA modelling framework to assess the likely effectiveness of facemasks in combination with ‘lock-down’ in managing the COVID-19 pandemicProc R Soc A202047620200376412648410.1098/rspa.2020.0376 – reference: VinerRMSchool closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic reviewLancet Child Adolesc Health2020439740410.1016/S2352-4642(20)30095-X – reference: CsilléryKApproximate Bayesian computation (ABC) in practiceTrends Ecol Evol20102541041810.1016/j.tree.2010.04.001 – reference: DaviesNGAge-dependent effects in the transmission and control of COVID-19 epidemicsNat Med2020261205121110.1038/s41591-020-0962-9 – reference: LucianiFThe epidemiological fitness cost of drug resistance in Mycobacterium tuberculosisPNAS2009106147111471510.1073/pnas.0902437106 – reference: BraunerJMInferring the effectiveness of government interventions against COVID-19Science2021371eabd933810.1126/science.abd9338 – reference: LiuYThe impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territoriesBMC Med2021194010.1186/s12916-020-01872-8 – reference: WeissmanGELocally informed simulation to predict hospital capacity needs during the COVID-19 pandemicAnna Intern Med2020173212810.7326/M20-1260 – reference: EikenberrySETo mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemicInfect Dis Model20205293308 – reference: KomendaMComplex reporting of the COVID-19 epidemic in the Czech Republic: use of an interactive web-based app in practiceJ Med Internet Res202022e1936710.2196/19367 – reference: BlumMGTranVCHIV with contact tracing: a case study in approximate Bayesian computationBioinformatics2010116446601437.62399 – reference: LiRSubstantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)Science202036848949310.1126/science.abb3221 – reference: KrendlACPerryBLThe impact of sheltering in place during the COVID-19 pandemic on older adults’ social and mental well-beingJ Gerontol Ser B202176e53e5810.1093/geronb/gbaa110 – reference: ChangSMobility network models of Covid-19 explain inequities and inform reopeningNature2021589710.1038/s41586-020-2923-3 – reference: ChenYEpidemiological characteristics of infection in COVID-19 close contacts in Ningbo cityChin J Epidemiol202041667671 – reference: BubarKMModel-informed COVID-19 vaccine prioritization strategies by age and serostatusScience202137191610.1126/science.abe6959 – reference: PremKCookARJitMProjecting social contact matrices in 152 countries using contact surveys and demographic dataPLoS Comput Biol201713e100569710.1371/journal.pcbi.1005697 – reference: DehningJInferring change points in the spread of COVID-19 reveals the effectiveness of interventionsScience2020369eabb978910.1126/science.abb9789 – reference: DomenicoLDImpact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategiesBMC Med20201824010.1186/s12916-020-01698-4 – reference: IwataKDoiAMiyakoshiCWas school closure effective in mitigating coronavirus disease 2019 (COVID-19)? Time series analysis using Bayesian inferenceInt J Infect Dis202099576110.1016/j.ijid.2020.07.052 – reference: BeaumontMAApproximate Bayesian computation in evolution and ecologyAnnu Rev Ecol Evol Syst20104137940610.1146/annurev-ecolsys-102209-144621 – reference: KretzschmarMEImpact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling studyLancet Public Health20205E452E45910.1016/S2468-2667(20)30157-2 – reference: PierceMMental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK populationLancet Psychiatry2020788389210.1016/S2215-0366(20)30308-4 – reference: Ferguson NM et al (2020) Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College- COVID19-NPI-modelling-16-03-2020.pdf – reference: YoungL-SAn SIQ delay differential model for disease control via isolationSci Rep20199350510.1038/s41598-019-39714-0 – reference: BBC (2020) Covid-19 pandemic: Sweden reverses face mask guidelines for public transport. www.bbc.com/news/world-europe-55371102. Accessed 20 Jan 2021 – reference: YangWKarspeckAShamanJComparison of filtering methods for the modeling and retrospective forecasting of influenza epidemicsPLoS Comput Biol201410e100358310.1371/journal.pcbi.1003583 – reference: Csilléry K et al (2015) ABC: tools for approximate Bayesian computation (ABC). https://cran.r-project.org/web/packages/abc/index.html – reference: KisslerSMProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic periodScience202036886086810.1126/science.abb5793 – reference: Börsch-SupanAData resource profile: the survey of health, ageing and retirement in Europe (SHARE)Int J Epidemiol20134992100110.1093/ije/dyt088 – reference: WeiWEPresymptomatic transmission of SARS-CoV-2—Singapore, January 23-March 16, 2020Morb Mortal Wkly Rep20206941141510.15585/mmwr.mm6914e1 – reference: KucharskiAJEarly dynamics of transmission and control of COVID-19: a mathematical modelling studyLancet Infect Dis20202055355810.1016/S1473-3099(20)30144-4 – reference: ToniTApproximate Bayesian computation scheme for parameter inference and model selection in dynamical systemsJ R Soc Interface2009618720210.1098/rsif.2008.0172 – reference: PeiSKandulaSShamanJDifferential effects of intervention timing on COVID-19 spread in the United StatesSci Adv20206eabd637010.1126/sciadv.abd6370 – reference: HaugNRanking the effectiveness of worldwide COVID-19 government interventionsNat Hum Behav202041303131210.1038/s41562-020-01009-0 – reference: GiordanoGModelling the COVID-19 epidemic and implementation of population-wide interventions in ItalyNat Med20202685586610.1038/s41591-020-0883-7 – volume: 26 start-page: 1205 year: 2020 ident: 1031_CR11 publication-title: Nat Med doi: 10.1038/s41591-020-0962-9 – volume: 69 start-page: 411 year: 2020 ident: 1031_CR39 publication-title: Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm6914e1 – volume: 5 start-page: 293 year: 2020 ident: 1031_CR14 publication-title: Infect Dis Model – volume: 11 start-page: 644 year: 2010 ident: 1031_CR3 publication-title: Bioinformatics – ident: 1031_CR29 – volume: 7 start-page: 883 year: 2020 ident: 1031_CR31 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(20)30308-4 – volume: 19 start-page: 40 year: 2021 ident: 1031_CR27 publication-title: BMC Med doi: 10.1186/s12916-020-01872-8 – volume: 41 start-page: 667 year: 2020 ident: 1031_CR8 publication-title: Chin J Epidemiol – ident: 1031_CR10 – volume: 371 start-page: 916 year: 2021 ident: 1031_CR6 publication-title: Science doi: 10.1126/science.abe6959 – volume: 13 start-page: e1005697 year: 2017 ident: 1031_CR32 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005697 – volume: 20 start-page: 553 year: 2020 ident: 1031_CR25 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30144-4 – volume: 4 start-page: 1303 year: 2020 ident: 1031_CR18 publication-title: Nat Hum Behav doi: 10.1038/s41562-020-01009-0 – volume: 76 start-page: e53 year: 2021 ident: 1031_CR23 publication-title: J Gerontol Ser B doi: 10.1093/geronb/gbaa110 – volume: 4 start-page: 992 year: 2013 ident: 1031_CR4 publication-title: Int J Epidemiol doi: 10.1093/ije/dyt088 – volume: 369 start-page: eabb9789 year: 2020 ident: 1031_CR12 publication-title: Science doi: 10.1126/science.abb9789 – volume: 41 start-page: 379 year: 2010 ident: 1031_CR2 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-102209-144621 – volume: 584 start-page: 257 year: 2020 ident: 1031_CR16 publication-title: Nature doi: 10.1038/s41586-020-2405-7 – volume: 25 start-page: 410 year: 2010 ident: 1031_CR9 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2010.04.001 – volume: 18 start-page: 240 year: 2020 ident: 1031_CR13 publication-title: BMC Med doi: 10.1186/s12916-020-01698-4 – volume: 92 start-page: 2543 year: 2020 ident: 1031_CR19 publication-title: J Med Virol doi: 10.1002/jmv.26041 – volume: 99 start-page: 57 year: 2020 ident: 1031_CR20 publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2020.07.052 – volume: 22 start-page: e19367 year: 2020 ident: 1031_CR22 publication-title: J Med Internet Res doi: 10.2196/19367 – volume: 4 start-page: 397 year: 2020 ident: 1031_CR38 publication-title: Lancet Child Adolesc Health doi: 10.1016/S2352-4642(20)30095-X – volume: 173 start-page: 21 year: 2020 ident: 1031_CR40 publication-title: Anna Intern Med doi: 10.7326/M20-1260 – volume: 12 start-page: 1614 year: 2021 ident: 1031_CR33 publication-title: Nat Commun doi: 10.1038/s41467-021-21899-6 – volume: 9 start-page: 3505 year: 2019 ident: 1031_CR42 publication-title: Sci Rep doi: 10.1038/s41598-019-39714-0 – ident: 1031_CR15 – volume: 5 start-page: E452 year: 2020 ident: 1031_CR24 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(20)30157-2 – volume: 6 start-page: eabd6370 year: 2020 ident: 1031_CR30 publication-title: Sci Adv doi: 10.1126/sciadv.abd6370 – volume: 589 start-page: 7 year: 2021 ident: 1031_CR7 publication-title: Nature doi: 10.1038/s41586-020-2923-3 – volume-title: An Introduction to Delay Differential Equations with Applications to the Life Sciences year: 2010 ident: 1031_CR35 – volume: 371 start-page: eabd9338 year: 2021 ident: 1031_CR5 publication-title: Science doi: 10.1126/science.abd9338 – volume: 26 start-page: 855 year: 2020 ident: 1031_CR17 publication-title: Nat Med doi: 10.1038/s41591-020-0883-7 – volume: 79 start-page: 249 year: 2019 ident: 1031_CR34 publication-title: J Math Biol doi: 10.1007/s00285-019-01356-1 – volume: 106 start-page: 14711 year: 2009 ident: 1031_CR28 publication-title: PNAS doi: 10.1073/pnas.0902437106 – volume: 476 start-page: 20200376 year: 2020 ident: 1031_CR36 publication-title: Proc R Soc A doi: 10.1098/rspa.2020.0376 – volume: 10 start-page: e1003583 year: 2014 ident: 1031_CR41 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003583 – ident: 1031_CR1 – volume: 368 start-page: 860 year: 2020 ident: 1031_CR21 publication-title: Science doi: 10.1126/science.abb5793 – volume: 6 start-page: 187 year: 2009 ident: 1031_CR37 publication-title: J R Soc Interface doi: 10.1098/rsif.2008.0172 – volume: 368 start-page: 489 year: 2020 ident: 1031_CR26 publication-title: Science doi: 10.1126/science.abb3221 |
SSID | ssj0007939 |
Score | 2.3769982 |
Snippet | Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the... Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Cell Biology COVID-19 COVID-19 Publications Epidemic models Epidemiology Life Sciences Masks Mathematical and Computational Biology Mathematics Mathematics and Statistics Older people Pandemics Vaccination |
Title | Delays, Masks, the Elderly, and Schools: First Covid-19 Wave in the Czech Republic |
URI | https://link.springer.com/article/10.1007/s11538-022-01031-5 https://www.proquest.com/docview/2678810036 https://www.proquest.com/docview/2679236944 https://pubmed.ncbi.nlm.nih.gov/PMC9208712 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1522-9602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AKRWK dateStart: 19730201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AFBBN dateStart: 19390301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WlMH2sI9uY97aosHeFhdbkRx5byFNVhayh7DQ7snoyzQ0uGNOBulfv5P8ERLaQZ_0IMmST3e6O3T3O4DPqHRiFUkRSuSgkGmdhoL1XNiORoVo0CZPXaLw9EdyMWffr_hVnRRWNtHuzZOkv6m3yW5eOF30ua9NEPIDOOTOQenA4eDbr8movYGR5yqzN0VpR5VVJ8vc_5VdhbS1MvdjJPceSr3-Gb-EebPzKuzk5my9Umf6bg_U8bG_9gpe1AYpGVQc9Bqe2OIInlYlKjdH8Hza4rqWb2B2bpdyU3bJVJY32GAXGbk638tNl8jCkArUs_xKxgs0K8nQpfmFcUou5V9LFoWfMLyz-prMbIWw_Rbm49HP4UVYV2UINePxKkxzpQw1XMUmYYmk2vAokgoNjTyXRgjGTCIMlVz0bI7U7xmpUub8nshBw6veO-gUt4V9DyRSsk91kivRN0zwREbG8L4WlqPDHkc2gLg5mkzXkOWucsYy24ItO8plSLnMUy7jAXxp5_yuADv-O_q4OfGsFt4yo4nD2HdIPQF8artR7Nxbiizs7dqPQdM4SRkLoL_DKe2qDrh7t6dYXHsA75RG6KfSALoNO2wXf3ivHx43_CM8o56jXLDiMXRWf9b2BA2olTqt5cW1k9nl5BQO5nTwD4d6D-Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9tRdPYwz74EGGwedLe1qAktVNnb6hr6QblAVENniJ_RVRUYVraSeWv5-x8VK0YEk95sB0n5zvfz_Ld7wC-otMJZSC4L1CDfKpU4nPasWE7Ch2iRkye2ETh0Xk8HNNfV-yqSgor6mj3-krS7dTLZDdnnDb63NUm8NlL2KAh57QFG8cn16f9ZgdGnSthb4LWji6rSpZ5_C2rDmmJMtdjJNcuSp3_GbyDcf3lZdjJ7dF8Jo_U_Rqp43N_7T28rQApOS416AO8MPkWvCpLVC624M2o4XUttuHih5mKRdEmI1Hc4gObSN_W-Z4u2kTkmpSknsV3MpggrCQ9m-bnhwn5Lf4ZMsndgN69UTfkwpQM2zswHvQve0O_qsrgK8rCmZ9kUupIMxnqmMYiUpoFgZAINLJMaFwOqmOuI8F4x2Qo_Y4WMqH23BNYanjZ2YVWfpebPSCBFN1IxZnkXU05i0WgNesqbhge2MPAeBDWS5OqirLcVs6YpkuyZSu5FCWXOsmlzINvzZg_JWHHk70P6hVPK-Mt0ii2HPuWqceDL00zmp29SxG5uZu7PgiN44RSD7ormtLMaom7V1vyyY0j8E6iAM-pkQftWh2Wk___W_ef1_0zvB5ejs7Ss5_npx9hM3LaZQMXD6A1-zs3hwimZvJTZTsPkaMQSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJtB4mPjUAowZibc1InHt1OENFSo2KEKICt4if0VUVAGRgtT99Ts7abqiDWlPebAdR_eR-1m--x3AAQadWEVShBItKGRap6FgbZe2ozEgGsTkqSsU7l8mZwP2847f_VHF77Pdp1eSVU2DY2kqxodPJj-cFb55R3WZ6L5PQcgX4CPDWO2OXwN63PyL0foqAJyi32Pwqstm_v6O-dA0w5tvsyXfXJn6SNRbhc81hCTHlc7X4IMt1mGpaio5WYeVfsPEWm7A9YkdyUnZIn1ZPuADh8ip68w9mrSILAypaDjLI9IbIhAkXVeYF8YpuZWvlgwLv6D7y-p7cm0rTuxNGPROb7pnYd1HIdSMx-MwzZUy1HAVm4QlkmrDo0gqhAZ5Lo0QjJlEGCq5aNscpdQ2UqXMnVQiR-au2luwWDwW9guQSMkO1UmuRMcwwRMZGcM7WliOR-w4sgHEUxFmuiYZd70uRtmMHtmJPUOxZ17sGQ_ge7PmqaLYeHf27lQzWe1uZUYTx4rvuHUC2G-G0VHc7Ycs7OOLn4NgNkkZC6Azp9FmV0e1PT9SDO895XZKIzxZ0gBaU93PNv_3t27_3_RvsHx10ssuflye78An6i3TZRruwuL4-cV-RfQzVnvewH8Dv7_3kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delays%2C+Masks%2C+the+Elderly%2C+and+Schools%3A+First+Covid-19+Wave+in+the+Czech+Republic&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Berec%2C+Lud%C4%9Bk&rft.au=Smy%C4%8Dka%2C+Jan&rft.au=Lev%C3%ADnsk%C3%BD%2C+Ren%C3%A9&rft.au=Hrom%C3%A1dkov%C3%A1%2C+Eva&rft.date=2022-08-01&rft.pub=Springer+US&rft.issn=0092-8240&rft.eissn=1522-9602&rft.volume=84&rft.issue=8&rft_id=info:doi/10.1007%2Fs11538-022-01031-5&rft.externalDocID=10_1007_s11538_022_01031_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |