Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility

In this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to predict forest fire hazard in the Chalus Rood watershed in the Mazandaran Province, Iran. Data from 108 historical forest fire events collected t...

Full description

Saved in:
Bibliographic Details
Published inGeomatics, natural hazards and risk Vol. 14; no. 1
Main Authors Janizadeh, Saeid, Bateni, Sayed M., Jun, Changhyun, Im, Jungho, Pai, Hao-Thing, Band, Shahab S., Mosavi, Amir
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1947-5705
1947-5713
1947-5713
DOI10.1080/19475705.2023.2206512

Cover

Abstract In this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to predict forest fire hazard in the Chalus Rood watershed in the Mazandaran Province, Iran. Data from 108 historical forest fire events collected through field surveys were applied as the basis of the analysis. About 70% of the data were used for training the models, while the remaining 30% was used for testing. A total of 14 environmental, climatic, and vegetation variables were used as input features to the models to predict forest fire probability. After conducting a multicollinearity test on the independent variables, the GLM and the ensemble models were applied for modeling. The efficiency of the models was evaluated using receiver operating characteristic (ROC) curve parameters. Results from the validation process, based on the area under the ROC curve (AUC), showed that the GLM, PLS-GLM, boosted-GLM, Bagging-GLM, and Bayesian-GLM models had efficiencies of 0.79, 0.75, 0.81, 0.84, and 0.85, respectively. The results indicated that all ensemble methods, except the PLS algorithm, improved the performance of the GLM model in modeling forest fire hazards in the Chalus Rood watershed, with the Bayesian algorithm being the most efficient method among them.
AbstractList In this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to predict forest fire hazard in the Chalus Rood watershed in the Mazandaran Province, Iran. Data from 108 historical forest fire events collected through field surveys were applied as the basis of the analysis. About 70% of the data were used for training the models, while the remaining 30% was used for testing. A total of 14 environmental, climatic, and vegetation variables were used as input features to the models to predict forest fire probability. After conducting a multicollinearity test on the independent variables, the GLM and the ensemble models were applied for modeling. The efficiency of the models was evaluated using receiver operating characteristic (ROC) curve parameters. Results from the validation process, based on the area under the ROC curve (AUC), showed that the GLM, PLS-GLM, boosted-GLM, Bagging-GLM, and Bayesian-GLM models had efficiencies of 0.79, 0.75, 0.81, 0.84, and 0.85, respectively. The results indicated that all ensemble methods, except the PLS algorithm, improved the performance of the GLM model in modeling forest fire hazards in the Chalus Rood watershed, with the Bayesian algorithm being the most efficient method among them.
AbstractIn this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to predict forest fire hazard in the Chalus Rood watershed in the Mazandaran Province, Iran. Data from 108 historical forest fire events collected through field surveys were applied as the basis of the analysis. About 70% of the data were used for training the models, while the remaining 30% was used for testing. A total of 14 environmental, climatic, and vegetation variables were used as input features to the models to predict forest fire probability. After conducting a multicollinearity test on the independent variables, the GLM and the ensemble models were applied for modeling. The efficiency of the models was evaluated using receiver operating characteristic (ROC) curve parameters. Results from the validation process, based on the area under the ROC curve (AUC), showed that the GLM, PLS-GLM, boosted-GLM, Bagging-GLM, and Bayesian-GLM models had efficiencies of 0.79, 0.75, 0.81, 0.84, and 0.85, respectively. The results indicated that all ensemble methods, except the PLS algorithm, improved the performance of the GLM model in modeling forest fire hazards in the Chalus Rood watershed, with the Bayesian algorithm being the most efficient method among them.
Author Bateni, Sayed M.
Pai, Hao-Thing
Mosavi, Amir
Jun, Changhyun
Im, Jungho
Janizadeh, Saeid
Band, Shahab S.
Author_xml – sequence: 1
  givenname: Saeid
  surname: Janizadeh
  fullname: Janizadeh, Saeid
  organization: Department of Civil and Environmental Engineering and Water Resources Research Center, University of HI at Manoa
– sequence: 2
  givenname: Sayed M.
  surname: Bateni
  fullname: Bateni, Sayed M.
  organization: Department of Civil and Environmental Engineering and Water Resources Research Center, University of HI at Manoa
– sequence: 3
  givenname: Changhyun
  surname: Jun
  fullname: Jun, Changhyun
  organization: Department of Civil and Environmental Engineering, College of Engineering, Chung-Ang University
– sequence: 4
  givenname: Jungho
  surname: Im
  fullname: Im, Jungho
  organization: Department of Environmental Resources Engineering, State University of NY, College of Environmental Science and Forestry
– sequence: 5
  givenname: Hao-Thing
  surname: Pai
  fullname: Pai, Hao-Thing
  organization: International Graduate Institute of Artificial Intelligence, National Yunlin University of Science and Technology
– sequence: 6
  givenname: Shahab S.
  surname: Band
  fullname: Band, Shahab S.
  organization: Future Technology Research Center, College of Future, National Yunlin University of Science and Technology
– sequence: 7
  givenname: Amir
  surname: Mosavi
  fullname: Mosavi, Amir
  organization: Department of Informatics, J. Selye University
BookMark eNqNkU1v1DAQhiNUJErpT0CyxAUOuzj-SiIuoBW0lRZxgbPlxOOtV44dbK9W2xM_Hadpe-AAzGXGo3mfked9WZ354KGqXtd4XeMWv6871vAG8zXBhK4JwYLX5Fl1PvdXvKnp2VON-YvqMqU9LkFJ22B2Xv3ahLG3XmUbPDLhEJG2xkAEnxH4BGPvACm3C9Hm2zGhY0ko3wLagYeonL0DjZz1oCIagwaH3l5tv74rqIimCNoO2frd_ISUkbERUDqkAaZse-tsPr2qnhvlElw-5Ivqx5fP3zfXq-23q5vNp-1qYLzOq47XtMO46ShlPdWq7zBjglOsgAnTdu2gje6E5nUNBDPNqRBcgBKYMINpSy-qm4Wrg9rLKdpRxZMMysr7Rog7qWK2gwNphDBGdbzsZKxXohvK6p4PQAqrZzNLLKyDn9TpqJx7AtZYzrbIR1vkbIt8sKUI3yzCKYafh3IRuS8n9-XfknSYtJi1zTzFl6khhpQimP-mf_hDN9h872yOyrp_qj8uauuLW6M6hui0zOrkQjRR-cEmSf-O-A1oFsRA
CitedBy_id crossref_primary_10_1007_s11069_024_06457_9
crossref_primary_10_1080_19475705_2024_2443465
crossref_primary_10_3934_mbe_2023893
crossref_primary_10_1016_j_eswa_2024_124963
crossref_primary_10_1016_j_jenvman_2025_124600
crossref_primary_10_1016_j_heliyon_2024_e28525
crossref_primary_10_1108_ECAM_09_2023_0923
crossref_primary_10_2478_geosc_2024_0001
crossref_primary_10_1109_TGRS_2024_3412112
Cites_doi 10.1139/x86-171
10.3390/su14159446
10.3390/f13091405
10.1016/j.jenvman.2019.01.108
10.1016/j.ecolmodel.2016.12.022
10.1016/j.jhydrol.2020.125197
10.1037/0278-7393.20.6.1341
10.1016/j.jenvman.2016.11.044
10.3390/s20040984
10.1109/CITSM.2018.8674287
10.1108/09653560410568507
10.3390/rs14215546
10.1016/j.jclepro.2021.128713
10.5194/isprs-archives-XLII-5-299-2018
10.1080/02827581.2015.1052750
10.1016/j.envres.2020.109321
10.1016/S0303-2434(02)00006-5
10.1007/s11069-012-0450-8
10.1071/WF11039
10.1198/106186008X344522
10.1007/s00521-018-3515-0
10.1214/088342306000000015
10.1016/j.jenvman.2020.111014
10.1007/BF00058655
10.1016/j.acags.2020.100051
10.3390/land9100346
10.1038/s43247-020-00065-8
10.1080/19475705.2021.1920477
10.3390/rs12183019
10.1016/j.rsase.2022.100917
10.1016/j.scitotenv.2019.135161
10.1016/j.engappai.2022.105649
10.1016/j.agrformet.2016.11.002
10.1080/13658816.2011.642799
10.1016/j.agrformet.2009.06.022
10.3390/sym12061022
10.3390/rs8040347
10.1071/WF01035
10.1109/MAES.2020.3033392
10.1007/s11069-022-05495-5
10.1007/978-1-4419-9326-7
10.1016/j.jenvman.2021.113343
10.1007/s12145-023-00953-5
10.1038/s41598-020-60191-3
10.1016/S0169-7161(04)24011-1
10.1007/s11069-020-04169-4
10.1111/j.1745-3984.2001.tb01117.x
10.1080/10106049.2022.2060323
10.1016/j.envsoft.2014.01.018
10.2747/1548-1603.48.2.171
10.1007/s12665-014-3502-4
10.1016/j.firesaf.2020.102991
10.1080/00102202.2010.508476
10.1080/10618600.2019.1637747
10.1016/j.agrformet.2018.12.015
10.1016/j.ecoinf.2021.101348
10.1007/s10668-021-01394-0
10.3390/f10050408
10.1016/j.envsoft.2020.104640
10.1016/j.ecolind.2021.107869
10.1080/00949659308811554
10.1109/DMO.2011.5976512
10.3390/rs12223682
10.1007/s00704-018-2628-9
10.1198/106186005X47697
10.3390/f12010005
10.1002/wics.84
10.1214/lnms/1215091142
10.1007/s10479-016-2348-4
10.1117/1.JRS.15.042412
10.1016/j.scitotenv.2018.02.278
10.1016/j.ejsobi.2011.10.004
10.1559/152304097782438764
10.3390/f14040704
10.3390/rs10111777
10.1088/1755-1315/767/1/012005
10.3390/su14084668
10.5194/hess-18-4913-2014
10.1007/s10064-021-02546-2
10.1111/tgis.12688
10.1016/j.jksuci.2021.10.005
10.1139/er-2020-0019
10.1093/bioinformatics/18.suppl_1.S120
10.1590/2317-1545v40n3185259
10.1007/s10021-005-0054-1
10.1016/j.rse.2004.01.019
10.3390/f13030474
10.3390/ijgi10070447
10.1080/00401706.1996.10484549
10.3390/rs15051340
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
– notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7ST
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
HCIFZ
KL.
KR7
L.G
L6V
L7M
LK8
M7P
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
SOI
ADTOC
UNPAY
DOA
DOI 10.1080/19475705.2023.2206512
DatabaseName Taylor & Francis eJournals Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection (ProQuest)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Aerospace Collection (ProQuest)
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection (ProQuest)
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection (ProQuest)
Environmental Science Collection (ProQuest)
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
DatabaseTitleList
ProQuest Central Student

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Mathematics
EISSN 1947-5713
ExternalDocumentID oai_doaj_org_article_f66ffa9595144ba69c390b5ce224fb48
10.1080/19475705.2023.2206512
10_1080_19475705_2023_2206512
2206512
Genre Research Article
GroupedDBID .7F
0YH
4.4
5VS
7XC
8FE
8FG
8FH
AAFWJ
ABJCF
ACGFS
ACIWK
ACPRK
ADBBV
ADCVX
ADMSI
AEUYN
AFKRA
AFPKN
AFRAH
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
AQTUD
ARAPS
ATCPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CE4
EBS
ECGQY
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IPNFZ
J~4
L6V
LK5
LK8
M4Z
M7P
M7R
M7S
OK1
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
RDKPK
TDBHL
TFL
TFW
UU3
AAYXX
CITATION
PUEGO
7ST
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
KL.
KR7
L.G
L7M
PKEHL
PQEST
PQQKQ
PQUKI
RIG
SOI
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c451t-951390079334b3dab90446530ae46f898cdfd96d511e204d536656ea6024f0383
IEDL.DBID BENPR
ISSN 1947-5705
1947-5713
IngestDate Fri Oct 03 12:42:56 EDT 2025
Wed Oct 01 16:47:57 EDT 2025
Fri Jul 25 12:20:19 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Wed Oct 01 02:10:26 EDT 2025
Mon Oct 20 23:46:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-951390079334b3dab90446530ae46f898cdfd96d511e204d536656ea6024f0383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/19475705.2023.2206512
PQID 2902804872
PQPubID 436431
ParticipantIDs doaj_primary_oai_doaj_org_article_f66ffa9595144ba69c390b5ce224fb48
proquest_journals_2902804872
informaworld_taylorfrancis_310_1080_19475705_2023_2206512
unpaywall_primary_10_1080_19475705_2023_2206512
crossref_primary_10_1080_19475705_2023_2206512
crossref_citationtrail_10_1080_19475705_2023_2206512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Geomatics, natural hazards and risk
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_84_1
de los Campos G (e_1_3_4_30_1) 2014
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
Talukdar S (e_1_3_4_92_1) 2022
e_1_3_4_102_1
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_106_1
e_1_3_4_91_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_57_1
e_1_3_4_19_1
Shahfahad T (e_1_3_4_87_1) 2022
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_85_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_66_1
e_1_3_4_47_1
e_1_3_4_101_1
e_1_3_4_73_1
e_1_3_4_105_1
e_1_3_4_96_1
e_1_3_4_31_1
Paul RK. (e_1_3_4_71_1) 2006; 1
e_1_3_4_50_1
e_1_3_4_35_1
e_1_3_4_58_1
Stroup WW. (e_1_3_4_89_1) 2012
Kant Sharma L (e_1_3_4_53_1) 2012; 21
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
Dhar T (e_1_3_4_32_1) 2023; 29
McCulloch CE (e_1_3_4_60_1) 2004
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
e_1_3_4_100_1
e_1_3_4_104_1
e_1_3_4_74_1
e_1_3_4_97_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_13_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_17_1
e_1_3_4_78_1
e_1_3_4_4_1
e_1_3_4_83_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_68_1
Erten E (e_1_3_4_36_1) 2004
Hijmans RJ (e_1_3_4_41_1) 2015; 734
e_1_3_4_103_1
e_1_3_4_94_1
e_1_3_4_75_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
Ardabili S (e_1_3_4_12_1) 2019
e_1_3_4_18_1
References_xml – ident: e_1_3_4_38_1
  doi: 10.1139/x86-171
– volume-title: Generalized linear mixed models: modern concepts, methods and applications
  year: 2012
  ident: e_1_3_4_89_1
– ident: e_1_3_4_57_1
  doi: 10.3390/su14159446
– year: 2014
  ident: e_1_3_4_30_1
  article-title: Bayesian generalized linear regression
  publication-title: R Package Version
– volume: 1
  start-page: 58
  issue: 1
  year: 2006
  ident: e_1_3_4_71_1
  article-title: Multicollinearity: causes, effects and remedies
  publication-title: IASRI, New Delhi
– ident: e_1_3_4_25_1
  doi: 10.3390/f13091405
– ident: e_1_3_4_96_1
  doi: 10.1016/j.jenvman.2019.01.108
– ident: e_1_3_4_20_1
– ident: e_1_3_4_105_1
  doi: 10.1016/j.ecolmodel.2016.12.022
– ident: e_1_3_4_64_1
  doi: 10.1016/j.jhydrol.2020.125197
– ident: e_1_3_4_103_1
  doi: 10.1037/0278-7393.20.6.1341
– ident: e_1_3_4_80_1
  doi: 10.1016/j.jenvman.2016.11.044
– ident: e_1_3_4_9_1
  doi: 10.3390/s20040984
– ident: e_1_3_4_85_1
  doi: 10.1109/CITSM.2018.8674287
– ident: e_1_3_4_86_1
  doi: 10.1108/09653560410568507
– ident: e_1_3_4_68_1
  doi: 10.3390/rs14215546
– ident: e_1_3_4_82_1
  doi: 10.1016/j.jclepro.2021.128713
– start-page: 179
  year: 2022
  ident: e_1_3_4_92_1
  article-title: Forest fire susceptibility mapping by integrating remote sensing and machine learning algorithms
  publication-title: Adv Rem Sens Forest Monitor
– ident: e_1_3_4_67_1
  doi: 10.5194/isprs-archives-XLII-5-299-2018
– ident: e_1_3_4_73_1
  doi: 10.1080/02827581.2015.1052750
– ident: e_1_3_4_75_1
  doi: 10.1016/j.envres.2020.109321
– ident: e_1_3_4_49_1
  doi: 10.1016/S0303-2434(02)00006-5
– ident: e_1_3_4_6_1
  doi: 10.1007/s11069-012-0450-8
– ident: e_1_3_4_40_1
  doi: 10.1071/WF11039
– ident: e_1_3_4_84_1
  doi: 10.1198/106186008X344522
– ident: e_1_3_4_101_1
  doi: 10.1007/s00521-018-3515-0
– ident: e_1_3_4_106_1
  doi: 10.1214/088342306000000015
– ident: e_1_3_4_93_1
  doi: 10.1016/j.jenvman.2020.111014
– ident: e_1_3_4_18_1
  doi: 10.1007/BF00058655
– ident: e_1_3_4_91_1
  doi: 10.1016/j.acags.2020.100051
– ident: e_1_3_4_13_1
  doi: 10.3390/land9100346
– volume: 734
  start-page: 473
  year: 2015
  ident: e_1_3_4_41_1
  article-title: Package ‘raster’
  publication-title: R Package
– volume: 21
  start-page: 160
  issue: 2
  year: 2012
  ident: e_1_3_4_53_1
  article-title: Fuzzy AHP for forest fire risk modeling
  publication-title: Dis Preven Manage: Int J
– ident: e_1_3_4_4_1
  doi: 10.1038/s43247-020-00065-8
– ident: e_1_3_4_94_1
  doi: 10.1080/19475705.2021.1920477
– ident: e_1_3_4_8_1
  doi: 10.3390/rs12183019
– ident: e_1_3_4_83_1
  doi: 10.1016/j.rsase.2022.100917
– ident: e_1_3_4_43_1
  doi: 10.1016/j.scitotenv.2019.135161
– ident: e_1_3_4_81_1
  doi: 10.1016/j.engappai.2022.105649
– ident: e_1_3_4_21_1
  doi: 10.1016/j.agrformet.2016.11.002
– ident: e_1_3_4_55_1
  doi: 10.1080/13658816.2011.642799
– ident: e_1_3_4_46_1
  doi: 10.1016/j.agrformet.2009.06.022
– ident: e_1_3_4_69_1
  doi: 10.3390/sym12061022
– volume-title: Generalized, linear, and mixed models
  year: 2004
  ident: e_1_3_4_60_1
– ident: e_1_3_4_22_1
  doi: 10.3390/rs8040347
– ident: e_1_3_4_78_1
  doi: 10.1071/WF01035
– ident: e_1_3_4_99_1
  doi: 10.1109/MAES.2020.3033392
– ident: e_1_3_4_26_1
  doi: 10.1007/s11069-022-05495-5
– ident: e_1_3_4_104_1
  doi: 10.1007/978-1-4419-9326-7
– start-page: 181
  year: 2022
  ident: e_1_3_4_87_1
  article-title: Forest fire susceptibility mapping by integrating remote sensing and machine learning algorithms
  publication-title: Adv Rem Sens Forest Monitoring
– ident: e_1_3_4_31_1
  doi: 10.1016/j.jenvman.2021.113343
– ident: e_1_3_4_10_1
  doi: 10.1007/s12145-023-00953-5
– ident: e_1_3_4_74_1
  doi: 10.1038/s41598-020-60191-3
– ident: e_1_3_4_44_1
– ident: e_1_3_4_90_1
  doi: 10.1016/S0169-7161(04)24011-1
– ident: e_1_3_4_37_1
  doi: 10.1007/s11069-020-04169-4
– ident: e_1_3_4_52_1
  doi: 10.1111/j.1745-3984.2001.tb01117.x
– ident: e_1_3_4_14_1
  doi: 10.1080/10106049.2022.2060323
– ident: e_1_3_4_35_1
  doi: 10.1016/j.envsoft.2014.01.018
– ident: e_1_3_4_24_1
  doi: 10.2747/1548-1603.48.2.171
– ident: e_1_3_4_76_1
  doi: 10.1007/s12665-014-3502-4
– ident: e_1_3_4_56_1
  doi: 10.1016/j.firesaf.2020.102991
– ident: e_1_3_4_28_1
  doi: 10.1080/00102202.2010.508476
– ident: e_1_3_4_98_1
  doi: 10.1080/10618600.2019.1637747
– ident: e_1_3_4_47_1
  doi: 10.1016/j.agrformet.2018.12.015
– ident: e_1_3_4_5_1
  doi: 10.1016/j.ecoinf.2021.101348
– start-page: 222
  volume-title: XXth Congress of the international society for photogrammetry and remote sensing congress
  year: 2004
  ident: e_1_3_4_36_1
– ident: e_1_3_4_65_1
  doi: 10.1007/s10668-021-01394-0
– ident: e_1_3_4_39_1
  doi: 10.3390/f10050408
– ident: e_1_3_4_7_1
  doi: 10.1016/j.envsoft.2020.104640
– ident: e_1_3_4_63_1
  doi: 10.1016/j.ecolind.2021.107869
– ident: e_1_3_4_100_1
  doi: 10.1080/00949659308811554
– ident: e_1_3_4_102_1
  doi: 10.1109/DMO.2011.5976512
– volume: 29
  start-page: 100883
  year: 2023
  ident: e_1_3_4_32_1
  article-title: Forest fire occurrence, distribution and risk mapping using geoinformation technology: A case study in the sub-tropical forest of the Meghalaya, India
  publication-title: Remote Sens. Appl: Soc. Environ
– ident: e_1_3_4_51_1
  doi: 10.3390/rs12223682
– ident: e_1_3_4_95_1
  doi: 10.1007/s00704-018-2628-9
– ident: e_1_3_4_34_1
  doi: 10.1198/106186005X47697
– ident: e_1_3_4_62_1
  doi: 10.3390/f12010005
– ident: e_1_3_4_16_1
– ident: e_1_3_4_11_1
  doi: 10.1002/wics.84
– ident: e_1_3_4_19_1
  doi: 10.1214/lnms/1215091142
– ident: e_1_3_4_17_1
  doi: 10.1007/s10479-016-2348-4
– ident: e_1_3_4_33_1
  doi: 10.1117/1.JRS.15.042412
– ident: e_1_3_4_42_1
  doi: 10.1016/j.scitotenv.2018.02.278
– ident: e_1_3_4_45_1
  doi: 10.1016/j.ejsobi.2011.10.004
– ident: e_1_3_4_61_1
  doi: 10.1559/152304097782438764
– ident: e_1_3_4_88_1
  doi: 10.3390/f14040704
– ident: e_1_3_4_58_1
  doi: 10.3390/rs10111777
– ident: e_1_3_4_50_1
  doi: 10.1088/1755-1315/767/1/012005
– ident: e_1_3_4_54_1
– ident: e_1_3_4_2_1
  doi: 10.3390/su14084668
– ident: e_1_3_4_72_1
  doi: 10.5194/hess-18-4913-2014
– ident: e_1_3_4_66_1
  doi: 10.1007/s10064-021-02546-2
– ident: e_1_3_4_3_1
  doi: 10.1111/tgis.12688
– ident: e_1_3_4_15_1
  doi: 10.1016/j.jksuci.2021.10.005
– ident: e_1_3_4_48_1
  doi: 10.1139/er-2020-0019
– ident: e_1_3_4_70_1
  doi: 10.1093/bioinformatics/18.suppl_1.S120
– ident: e_1_3_4_23_1
  doi: 10.1590/2317-1545v40n3185259
– ident: e_1_3_4_77_1
  doi: 10.1007/s10021-005-0054-1
– ident: e_1_3_4_27_1
  doi: 10.1016/j.rse.2004.01.019
– ident: e_1_3_4_79_1
  doi: 10.3390/f13030474
– ident: e_1_3_4_97_1
  doi: 10.3390/ijgi10070447
– ident: e_1_3_4_59_1
  doi: 10.1080/00401706.1996.10484549
– ident: e_1_3_4_29_1
  doi: 10.3390/rs15051340
– start-page: 52
  volume-title: International conference on global research and education
  year: 2019
  ident: e_1_3_4_12_1
SSID ssj0000328704
Score 2.4068978
Snippet In this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to...
AbstractIn this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
artificial intelligence
Bagging
Bayesian analysis
Bayesian theory
Chalus Rood watershed
ensemble
Fire hazards
forest fire susceptibility
Forest fires
Forests
Generalized linear model
Generalized linear models
Independent variables
Mathematical models
mathematics
Modelling
natural hazards
Probability theory
Statistical models
Vegetation
Watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQF7hUhVJ1C1Q-9FAO2XUcx4mPUEFRVXoCiZtlxzYghWWVzQptT_3pzDjJauGyPfQY50P2zNgzY0_eI-SrKipTFJCmOsl9AjPRJSaUJklNaYtMGOMjqM_Vb3l5I37e5rdrVF9YE9bBA3eCmwQpQzAqh0hACGukqiBLt3nlwfcEK-JvvqxUa8lUXIMzPMDrjpRFkeQFy4ffd0o2wTZsGiN3-JhzcMMpf-WYIn7_G_TSVzHozmI6M8tnU9dr7ujiPXnXx5H0tOv_Htny032y01Oa3y8_kL8w0yHrjYKnAR6nAxdKSyF19Y-29tTUd0_NQ3v_OKe4IUshGqR3HRD1wx_vKMagpqGRLod--_Hr6gQ-1dBZg8c7WDCNl9BTGmDlpPPFPBbJxHrb5QG5uTi__n6Z9HQLSSXytE1AwiBaBMzLhM2csYpF9DVmvJChVGXlglPSQYjmORMuzyQEg95IcPOBQab7kWxPn6b-E6GVZ0UQlWMBaTwEtyaA0mGqFynnQakREYOsddVjkSMlRq3THrJ0UJFGFeleRSMyXr0268A4Nr1whopcPYxY2rEBLEz3FqY3WdiIqHUz0G3cSgkd74nONnTgaLAZ3S8Oc80jYg5kinB7srKjfxvR5_8xokOyi9_s8CqPyHbbLPwxxFat_RKn0Qtj6hfm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis eJournals Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQORQOCAqILQX5wAEO2TqOE8dHQJQVYjlRCU6WHdvbSunuKskKLSd-OjPOh1okVCSOTjKW4xmPZ5zJe4S8UrIyUkKa6gruE1iJLjGhNElqSiszYYyPoD7LL8XiXHz6lo_VhO1QVok5dOiBIqKvxsVtbDtWxJ1C3i1zyfI5Un_POYddFHmG73KZKjRs9n0xHbMgXJxk_bdlIRMUG__j-VtPN3aoCOT_B4zpjWD0cLfemv0PU9fX9qWzh-TBEFDSt70FPCJ3_PqIHA7c5hf7I3J_OSGzto_JL3AAkAxHfdAAwnSkSOkoZLT-ytaemnq1aS67i6uW4jktBXm66vGpL396R3HOTEMjiw59_fHz8g101dBtg199sI4amzBuGsCh0nbXxtqZWIa7f0LOzz58fb9IBhaGpBJ52iUQgmWKIY5eJmzmjFUsgrIx40URSlVWLjhVOIjcPGfC5VkBMaI3Bez-gUEC_JQcrDdr_4zQyjMZROVYQHYPwa0JYAvgAWTKeVBqRsQ487oaIMqRKaPW6YBkOipMo8L0oLAZmU9i2x6j4zaBd6jW6WGE2I4XNs1KDytWh6IIwagc3l8IawpVwTTYvPIQ9AQryhlR141Cd_GEJfR0KDq7ZQAnowXpwWe0mkcgHUgg4fbpZFX_9kbH_zGY5-QeNnv0yhNy0DU7_wIirc6-jGvpN8NUGRA
  priority: 102
  providerName: Taylor & Francis
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuvBELBfnAAQ5J83Cc-IDQgigVohUHVioHZNmxva1Is6tsVmh7QPx0ZpxkaSuhwoFbXk7iyXj8TTL5PkKei7xUeQ5pquGJDWAkmkC5QgWxKnSeMqWsJ_U5POIHU_bhODveIl-Hf2GwrBJzaNcRRfhYjYN7YdxQEbcHeXee5VEWovR3mCQwi8bJ6xqi_cSLDL5qG6xXnoOt9aoFCHWDbPMMoPqIbE-PPk2--C_NLA_wJL-X43T4w-dP17g0d3mK_ysEp5dg6s6qXqj1d1VVF2as_dvkx9DXrlDlW7hqdVieX6GB_G_GuENu9ViXTjrnvEu2bH2P7PSy6yfr--QnRCPIzL1zUAeH00GvpaWQXtszXVmqqtm8OW1PzpYUXxpTQKx01pFln55bQ_GeVUO9pA998f7j4Us4VUMXDX6CwqJuXAVTUQfRnS5XS1_I42uC1w_IdP_d57cHQS8JEZQsi9sA8GAqIiT1S5lOjdIi8gxxkbKMu0IUpXFGcAMw0iYRM1nKAbBaxQGKuAiy8YdkVM9r-4jQ0ka5Y6WJHEqNsEQrB44J4SiPk8QJMSZseNiy7PnSUbajknFPqzqYXqLpZW_6MQk3zRYdYch1Dd6gJ20ORr5vv2HezGQfPqTj3DklMug_Y1pxUYIZdFZaQGBOs2JMxEU_lK1_3eM6bRaZXnMDu4PTyj6ALWXiWX0gm4XdextH_rsePf7nFk_ITVztCDR3yQh99imAvVY_64fsLyy1Rkk
  priority: 102
  providerName: Unpaywall
Title Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility
URI https://www.tandfonline.com/doi/abs/10.1080/19475705.2023.2206512
https://www.proquest.com/docview/2902804872
https://www.tandfonline.com/doi/pdf/10.1080/19475705.2023.2206512?needAccess=true&role=button
https://doaj.org/article/f66ffa9595144ba69c390b5ce224fb48
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1947-5713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328704
  issn: 1947-5705
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-5713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328704
  issn: 1947-5705
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1947-5713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328704
  issn: 1947-5705
  databaseCode: 8FG
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAUI
  databaseName: Routledge Open
  customDbUrl:
  eissn: 1947-5713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328704
  issn: 1947-5705
  databaseCode: RDKPK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/openaccess/openjournals
  providerName: Routledge
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1947-5713
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328704
  issn: 1947-5705
  databaseCode: 0YH
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLa27jAuiJ-iMCofOMAhreM4P3xAaEPrKsSqCVFpO0VObHdIWVvSVKic-NN5z3HKxoFxiRTLiWK_5-fPz873EfJGpqVKU1im6oSbAEaiDpTNVBCqrEgjoZRxpD7n02QyE58u48s9Mu3-hcFjlV1MdIFaL0vMkY-4oxkBeM0_rL4HqBqFu6udhIby0gr6vaMY2ycHHJmxeuTg5HR68WWXdUH2uJS1W80iDeKUxd1vPRkbYRkWDVFTfMg5TM8hvzNhOV7_v1hN72DTw81ipbY_VFXdmqbGj8hDjy_pcesQj8meWTwhh17q_Hr7lPyCCACrYWcQaqE67TRSGgpLWnNTVIaqag5tb65v1hQTtRRQIp23BNXffhpNEZuqmjoZHfr27PP5O3hVTVc1bvvgQWq8hS-lFiIqXW_W7vCMO4e7fUZm49OvHyeBl2EIShGHTQAYLJIMifQiUURaFZI5VjamjEhsJrNSWy0TDdDNcCZ0HCUAEo1KYPq3DFbAz0lvsVyYF4SWhqVWlJpZlPcQvFAWnAFCQBpybqXsE9H1dV56jnKUyqjy0FOZdibK0US5N1GfDHePrVqSjvseOEFD7iojx7YrWNbz3A_Z3CaJtUrG0H4hCpXIErqhiEsDqMcWIusTedsN8salWGyrh5JH93zAUeczuQ8a6_yPi_fJaOdH_9eil_9-4SvyAGu3DJVHpNfUG_Ma0FRTDMg-u5rANRufDfxwGbjMBNzNphfHV78BwFAaMA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGdigXNL5EYYAPIMEhbeI4X4cJMdjoWFshtEm7GSe2O6Ss7dJUUznxl_G38Z7jlI0D47JjrNhK_J6ff88fvx8hr7KkkEkCaaqKmfZgJCpPmlR6gUzzJORSakvqMxrHgxP--TQ63SC_2rsweKyyjYk2UKtZgWvkfWZpRgBes3fzCw9Vo3B3tZXQkE5aQe1aijF3seNIry4hhVvsHn4Ee79m7GD_-MPAcyoDXsGjoPYAYkDejzxxIc9DJfPMt6RjvtQ8NmmWFsqoLFaATDTzuYrCGDCQljHMbsaHBA_avUO2eMgzSP629vbHX76uV3mQrS7xm61tnnhR4kftNaLU72MZFvVQw7zHGMCBgF2bIK2OwF8sqtewcGc5ncvVpSzLK9PiwTa55_Asfd844H2yoacPSMdJq5-tHpKfEHEg-7YOQA28TltNlppCCq3P81JTWU6gr-uz8wXFhWEKqJROGkLs7z-0ooiFZUWtbA9982k4egtNVXRe4TYTHtzGR_hSaiCC08VyYQ_r2HO_q0fk5FYM8phsTmdT_YTQQvuJ4YXyDcqJcJZLA84HIScJGDNZ1iW87WtROE50lOYoReCoU1sTCTSRcCbqkt662rwhBbmpwh4acv0ycnrbglk1ES5ECBPHxsgsgv_nPJdxVkA35FGhAWWZnKddkl11A1HbJR3T6K-I8IYP2Gl9RrggtRB_hlSX9Nd-9H9_9PTfDb4kncHxaCiGh-OjZ-Qu1mzYMXfIZl0t9XNAcnX-wg0XSr7d9gj9DXIPT9k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkSgcEBRQlxbwgQMcsvUmjh0feS0LdCsOVIKTZcf2tlK6u0qyqpYTP52x40QtEioSxzwmcjzjeTiT70PopeCl4hzKVMNSm8BKNIlyhUomqtA8o0rZAOozP2GzU_r5e953EzaxrdLX0K4Digi-2i_utXF9R9wR1N085yQfe-rvcZpCFPU8w7fzAsIbmDT5MRu2WTxcHCfdt2XKEy_W_8fztyddi1AByP8PGNNryejuZrlW20tVVVfi0vQBuh8TSvyms4CH6JZd7qHdyG1-tt1D9-YDMmvzCP0CBwDFcNAHdiCMe4qUFkNFay90ZbGqFqv6vD27aLDfp8UgjxcdPvX5T2uwnzNV48Cig199PJ6_hkfVeF37rz6-j9ofwrixA4eKm00TemdCG-72MTqdfvj2bpZEFoakpPmkTSAFywTxOHoZ1ZlRWpAAykaUpcwVoiiNM4IZyNxsSqjJMwY5olUMor8jUAA_QTvL1dLuI1xawh0tDXGe3YOmWjmwBfAAfJKmTogRov3MyzJClHumjEpOIpJprzDpFSajwkZoPIitO4yOmwTeerUON3uI7XBiVS9kXLHSMeacEjm8P6VaMVHCNOi8tJD0OE2LERJXjUK2YYfFdXQoMrthAIe9BcnoMxqZBiAdKCDh8tFgVf_2Rk__YzAv0J2v76fy-NPJlwN011_pgCwP0U5bb-wzSLpa_Twsq98IfRul
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuvBELBfnAAQ5J83Cc-IDQgigVohUHVioHZNmxva1Is6tsVmh7QPx0ZpxkaSuhwoFbXk7iyXj8TTL5PkKei7xUeQ5pquGJDWAkmkC5QgWxKnSeMqWsJ_U5POIHU_bhODveIl-Hf2GwrBJzaNcRRfhYjYN7YdxQEbcHeXee5VEWovR3mCQwi8bJ6xqi_cSLDL5qG6xXnoOt9aoFCHWDbPMMoPqIbE-PPk2--C_NLA_wJL-X43T4w-dP17g0d3mK_ysEp5dg6s6qXqj1d1VVF2as_dvkx9DXrlDlW7hqdVieX6GB_G_GuENu9ViXTjrnvEu2bH2P7PSy6yfr--QnRCPIzL1zUAeH00GvpaWQXtszXVmqqtm8OW1PzpYUXxpTQKx01pFln55bQ_GeVUO9pA998f7j4Us4VUMXDX6CwqJuXAVTUQfRnS5XS1_I42uC1w_IdP_d57cHQS8JEZQsi9sA8GAqIiT1S5lOjdIi8gxxkbKMu0IUpXFGcAMw0iYRM1nKAbBaxQGKuAiy8YdkVM9r-4jQ0ka5Y6WJHEqNsEQrB44J4SiPk8QJMSZseNiy7PnSUbajknFPqzqYXqLpZW_6MQk3zRYdYch1Dd6gJ20ORr5vv2HezGQfPqTj3DklMug_Y1pxUYIZdFZaQGBOs2JMxEU_lK1_3eM6bRaZXnMDu4PTyj6ALWXiWX0gm4XdextH_rsePf7nFk_ITVztCDR3yQh99imAvVY_64fsLyy1Rkk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+four+different+ensemble+algorithms+with+the+generalized+linear+model+%28GLM%29+for+predicting+forest+fire+susceptibility&rft.jtitle=Geomatics%2C+natural+hazards+and+risk&rft.au=Janizadeh%2C+Saeid&rft.au=Bateni%2C+Sayed+M&rft.au=Changhyun+Jun&rft.au=Im%2C+Jungho&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1947-5705&rft.eissn=1947-5713&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1080%2F19475705.2023.2206512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5705&client=summon