Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility

In this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to predict forest fire hazard in the Chalus Rood watershed in the Mazandaran Province, Iran. Data from 108 historical forest fire events collected t...

Full description

Saved in:
Bibliographic Details
Published inGeomatics, natural hazards and risk Vol. 14; no. 1
Main Authors Janizadeh, Saeid, Bateni, Sayed M., Jun, Changhyun, Im, Jungho, Pai, Hao-Thing, Band, Shahab S., Mosavi, Amir
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1947-5705
1947-5713
1947-5713
DOI10.1080/19475705.2023.2206512

Cover

More Information
Summary:In this study, the generalized linear model (GLM) and four ensemble methods (partial least squares (PLS), boosting, bagging, and Bayesian) were applied to predict forest fire hazard in the Chalus Rood watershed in the Mazandaran Province, Iran. Data from 108 historical forest fire events collected through field surveys were applied as the basis of the analysis. About 70% of the data were used for training the models, while the remaining 30% was used for testing. A total of 14 environmental, climatic, and vegetation variables were used as input features to the models to predict forest fire probability. After conducting a multicollinearity test on the independent variables, the GLM and the ensemble models were applied for modeling. The efficiency of the models was evaluated using receiver operating characteristic (ROC) curve parameters. Results from the validation process, based on the area under the ROC curve (AUC), showed that the GLM, PLS-GLM, boosted-GLM, Bagging-GLM, and Bayesian-GLM models had efficiencies of 0.79, 0.75, 0.81, 0.84, and 0.85, respectively. The results indicated that all ensemble methods, except the PLS algorithm, improved the performance of the GLM model in modeling forest fire hazards in the Chalus Rood watershed, with the Bayesian algorithm being the most efficient method among them.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1947-5705
1947-5713
1947-5713
DOI:10.1080/19475705.2023.2206512