Machine learning for workpiece mass prediction using real and synthetic acoustic data
We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algor...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 19534 - 12 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Nature Publishing Group
04.06.2025
Nature Publishing Group UK Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-03018-3 |
Cover
| Abstract | We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10
, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing. |
|---|---|
| AbstractList | Abstract We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10− 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing. We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10− 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing. We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10 , and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing. We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10- 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10- 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing. |
| ArticleNumber | 19534 |
| Author | Whittaker, D. S. Byrne, T. F. Gregório, J. |
| Author_xml | – sequence: 1 givenname: D. S. surname: Whittaker fullname: Whittaker, D. S. – sequence: 2 givenname: J. surname: Gregório fullname: Gregório, J. – sequence: 3 givenname: T. F. surname: Byrne fullname: Byrne, T. F. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40467672$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhSNUREvpH2CBIrFhE_Arsb1CqOJRqYgNXVs3zvVMhowd7KTV_HucSalaVnjjK_v43HM_vyxOfPBYFK8peU8JVx-SoLVWFWF1RTihquLPijNGRF0xztjJo_q0uEhpR_KqmRZUvyhOBRGNbCQ7K26-g932HssBIfreb0oXYnkX4q-xR4vlHlIqx4hdb6c--HJOiyYiDCX4rkwHP21x6m0JNsxpKTqY4FXx3MGQ8OJ-Py9uvnz-efmtuv7x9ery03VlRU2mSkugjcK6lpxbalXnuG0R0WklhXUgJK-ROpLHaxlrSS00V1qBRsu7jnN-Xlytvl2AnRljv4d4MAF6czwIcWMg5lADGua4am3TNlTWwioHTLIu06GaO9K2Lnvx1Wv2IxzuYBgeDCkxC3OzMjeZuTkyN0uCj-urcW732Fn0U4ThSZSnN77fmk24NZRRLlWjs8O7e4cYfs-YJrPvk8VhAI8ZqeFsaSq0oln69h_pLszRZ8JHVSOFZovhm8eRHrL8_fQsYKvAxpBSRPc_g_4Ba3K_JA |
| Cites_doi | 10.1109/ACCESS.2022.3185049 10.1109/WoSSPA.2013.6602399 10.1162/089976698300017467 10.1016/j.jmatprotec.2009.01.013 10.1038/s41377-020-0308-x 10.3390/s21196687 10.1016/j.jsv.2014.04.062 10.1016/j.ymssp.2007.09.012 10.1038/s41592-018-0019-x 10.1007/978-3-030-67936-1 10.1016/j.cirpj.2015.08.004 10.1088/0143-0807/31/3/003 10.1016/j.promfg.2020.10.053 10.1201/9781351132916 10.1007/978-3-031-43205-7 10.48550/arXiv.1506.02142 10.48550/arXiv.1908.09257 10.1186/s40537-023-00727-2 10.1016/j.neuroimage.2018.03.016 10.48550/arXiv.1605.08695 10.1007/s00170-008-1698-8 10.1093/mnrasl/slx008 10.1016/j.physa.2013.04.036 10.1016/j.ndteint.2006.09.006 10.1007/s11740-022-01113-2 10.1016/0165-1684(94)90029-9 10.1016/j.compind.2022.103782 10.1109/CVPR.2014.223 10.1007/s40436-021-00345-2 10.1016/j.jmapro.2019.10.020 10.1088/1742-6596/2438/1/012155 10.1080/14786440109462720 10.1007/s12206-016-0940-9 10.1016/j.procir.2013.09.010 10.3390/cmsf2022003007 10.1016/j.measurement.2022.111701 10.1016/j.measurement.2015.10.029 10.1115/1.4036350 10.1016/j.jmapro.2021.09.055 10.1016/j.compind.2018.04.015 10.1016/j.promfg.2020.05.134 10.48550/arXiv.1412.6980 10.1016/j.eswa.2023.119738 10.1098/rsta.2017.0237 10.1007/s10845-022-01963-8 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-03018-3 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database (Proquest) Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_2f38bc6b61754c8fa272d322193f0bbf 10.1038/s41598-025-03018-3 PMC12137869 40467672 10_1038_s41598_025_03018_3 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML AAYXX ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU CITATION DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP ALIPV NPM PMFND 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c450t-97a168e55733c1c8df3cbeeef9874cfa4735e1f0018b22b05493898a9ec3dd333 |
| IEDL.DBID | DOA |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:11 EDT 2025 Sun Oct 26 03:59:34 EDT 2025 Tue Sep 30 17:04:01 EDT 2025 Fri Sep 05 15:56:52 EDT 2025 Tue Oct 07 09:09:02 EDT 2025 Sun Jun 08 01:33:39 EDT 2025 Wed Oct 01 05:50:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Acoustic spectra Machine learning (ML) Manufacturing Neural network Synthetic data |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-97a168e55733c1c8df3cbeeef9874cfa4735e1f0018b22b05493898a9ec3dd333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/2f38bc6b61754c8fa272d322193f0bbf |
| PMID | 40467672 |
| PQID | 3215674929 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f38bc6b61754c8fa272d322193f0bbf unpaywall_primary_10_1038_s41598_025_03018_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12137869 proquest_miscellaneous_3215984981 proquest_journals_3215674929 pubmed_primary_40467672 crossref_primary_10_1038_s41598_025_03018_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-04 |
| PublicationDateYYYYMMDD | 2025-06-04 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group Nature Publishing Group UK Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group – name: Nature Publishing Group UK – name: Nature Portfolio |
| References | AN Gorban (3018_CR46) 2018; 376 H Tercan (3018_CR3) 2022; 33 M Alabadi (3018_CR2) 2022; 10 GMA Acayaba (3018_CR41) 2015; 11 U Hassan (3018_CR44) 2010; 31 N Altman (3018_CR45) 2018; 15 FC Neto (3018_CR10) 2013; 12 K Zhu (3018_CR28) 2023; 144 3018_CR40 DR Salgado (3018_CR7) 2008; 43 VN Livina (3018_CR52) 2013; 392 L Li (3018_CR21) 2016; 79 3018_CR43 O Surucu (3018_CR4) 2023; 221 3018_CR42 K Ikuta (3018_CR49) 2022; 3 3018_CR17 P Comon (3018_CR35) 1994; 36 3018_CR50 L Alzubaidi (3018_CR29) 2023; 10 3018_CR51 PS Pai (3018_CR16) 2015; 22 B Schölkopf (3018_CR34) 1998; 10 C Du (3018_CR13) 2021; 9 3018_CR12 LV Amitonova (3018_CR38) 2020; 9 3018_CR11 K Pearson (3018_CR33) 1901; 2 D Wu (3018_CR23) 2017; 139 S Bagri (3018_CR26) 2021; 71 Z Li (3018_CR22) 2019; 48 I Kobyzev (3018_CR47) 2020 3018_CR6 M Malekian (3018_CR24) 2009; 209 3018_CR5 FJ Alonso (3018_CR18) 2008; 22 J Yu (3018_CR14) 2016; 30 3018_CR20 T Bergs (3018_CR25) 2020; 48 IM Sarivan (3018_CR8) 2020; 51 3018_CR39 H Boyes (3018_CR1) 2018; 101 DA Molitor (3018_CR27) 2022; 16 K Schawinski (3018_CR48) 2017; 467 3018_CR30 S Orhan (3018_CR15) 2007; 40 L Balsamo (3018_CR9) 2014; 333 F Artoni (3018_CR36) 2018; 175 3018_CR37 3018_CR32 3018_CR31 A Bahador (3018_CR19) 2022; 201 |
| References_xml | – volume: 10 start-page: 66374 year: 2022 ident: 3018_CR2 publication-title: IEEE Access. doi: 10.1109/ACCESS.2022.3185049 – ident: 3018_CR6 doi: 10.1109/WoSSPA.2013.6602399 – volume: 10 start-page: 299 issue: 5 year: 1998 ident: 3018_CR34 publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 209 start-page: 4903 issue: 10 year: 2009 ident: 3018_CR24 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2009.01.013 – volume: 9 start-page: 81 year: 2020 ident: 3018_CR38 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-020-0308-x – ident: 3018_CR20 doi: 10.3390/s21196687 – volume: 333 start-page: 4526 issue: 19 year: 2014 ident: 3018_CR9 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.04.062 – volume: 22 start-page: 735 issue: 3 year: 2008 ident: 3018_CR18 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.09.012 – volume: 15 start-page: 399 year: 2018 ident: 3018_CR45 publication-title: Nat. Methods doi: 10.1038/s41592-018-0019-x – ident: 3018_CR11 doi: 10.1007/978-3-030-67936-1 – volume: 11 start-page: 62 year: 2015 ident: 3018_CR41 publication-title: CIRP J. Manufact. Sci. Technol. doi: 10.1016/j.cirpj.2015.08.004 – volume: 31 start-page: 453 year: 2010 ident: 3018_CR44 publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/31/3/003 – volume: 51 start-page: 373 year: 2020 ident: 3018_CR8 publication-title: Proc. Manuf. doi: 10.1016/j.promfg.2020.10.053 – ident: 3018_CR42 – ident: 3018_CR30 doi: 10.1201/9781351132916 – ident: 3018_CR31 – ident: 3018_CR50 doi: 10.1007/978-3-031-43205-7 – ident: 3018_CR32 doi: 10.48550/arXiv.1506.02142 – year: 2020 ident: 3018_CR47 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.48550/arXiv.1908.09257 – volume: 22 start-page: 652 year: 2015 ident: 3018_CR16 publication-title: Indian J. Eng. Mater. Sci. – volume: 10 start-page: 46 year: 2023 ident: 3018_CR29 publication-title: J. Big Data doi: 10.1186/s40537-023-00727-2 – volume: 175 start-page: 176 year: 2018 ident: 3018_CR36 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.016 – ident: 3018_CR39 doi: 10.48550/arXiv.1605.08695 – volume: 43 start-page: 40 year: 2008 ident: 3018_CR7 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1698-8 – volume: 467 start-page: L110 issue: 1 year: 2017 ident: 3018_CR48 publication-title: Mon. Notices R. Astron. Soc. Lett. doi: 10.1093/mnrasl/slx008 – volume: 392 start-page: 3891 issue: 18 year: 2013 ident: 3018_CR52 publication-title: Phys. A doi: 10.1016/j.physa.2013.04.036 – volume: 40 start-page: 121 year: 2007 ident: 3018_CR15 publication-title: NDT&E Int. doi: 10.1016/j.ndteint.2006.09.006 – volume: 16 start-page: 481 year: 2022 ident: 3018_CR27 publication-title: Prod. Eng. Res. Devel. doi: 10.1007/s11740-022-01113-2 – volume: 36 start-page: 287 issue: 3 year: 1994 ident: 3018_CR35 publication-title: Sig. Process. doi: 10.1016/0165-1684(94)90029-9 – volume: 144 start-page: 103782 year: 2023 ident: 3018_CR28 publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103782 – ident: 3018_CR5 doi: 10.1109/CVPR.2014.223 – ident: 3018_CR17 – volume: 9 start-page: 206 year: 2021 ident: 3018_CR13 publication-title: Adv. Manuf. doi: 10.1007/s40436-021-00345-2 – volume: 48 start-page: 66 year: 2019 ident: 3018_CR22 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.10.020 – ident: 3018_CR51 doi: 10.1088/1742-6596/2438/1/012155 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 3018_CR33 publication-title: Phil. Mag. doi: 10.1080/14786440109462720 – volume: 30 start-page: 4697 issue: 10 year: 2016 ident: 3018_CR14 publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-016-0940-9 – volume: 12 start-page: 49 year: 2013 ident: 3018_CR10 publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.09.010 – volume: 3 start-page: 7 issue: 1 year: 2022 ident: 3018_CR49 publication-title: Comput. Sci. Math. Forum doi: 10.3390/cmsf2022003007 – volume: 201 start-page: 111701 year: 2022 ident: 3018_CR19 publication-title: Measurement doi: 10.1016/j.measurement.2022.111701 – volume: 79 start-page: 44 year: 2016 ident: 3018_CR21 publication-title: Measurement doi: 10.1016/j.measurement.2015.10.029 – ident: 3018_CR40 – volume: 139 start-page: 071018 issue: 7 year: 2017 ident: 3018_CR23 publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4036350 – ident: 3018_CR12 – volume: 71 start-page: 679 year: 2021 ident: 3018_CR26 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.09.055 – volume: 101 start-page: 1 year: 2018 ident: 3018_CR1 publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.04.015 – volume: 48 start-page: 947 year: 2020 ident: 3018_CR25 publication-title: Proc. Manuf. doi: 10.1016/j.promfg.2020.05.134 – ident: 3018_CR43 doi: 10.48550/arXiv.1412.6980 – volume: 221 start-page: 119738 year: 2023 ident: 3018_CR4 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119738 – volume: 376 start-page: 20170237 year: 2018 ident: 3018_CR46 publication-title: Philosophical Trans. Royal Soc. A doi: 10.1098/rsta.2017.0237 – volume: 33 start-page: 1879 year: 2022 ident: 3018_CR3 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01963-8 – ident: 3018_CR37 |
| SSID | ssj0000529419 |
| Score | 2.452962 |
| Snippet | We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple... Abstract We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 19534 |
| SubjectTerms | Acoustic spectra Acoustics Algorithms Datasets Machine learning Machine learning (ML) Manufacturing Manufacturing industry Neural network Neural networks Spectrum analysis Synthetic data Waste management |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_OHqIv4rfRU1bwTcMl-5FsHkQ8ueMQrohYuLdlP-tBTWvbQ_rfO7P50KKIr0lok5nZmV8ys78fIa-qUKrG1yKH91mfC-MbyINC5tZII6ytipDk3i6m1flMfLyUlwdkOuyFwbHKISemRO2XDr-RH3OoTVUtoJq_W33PUTUKu6uDhIbppRX820QxdoMcMmTGmpDDk9Ppp8_jVxfsa4my6XfPFFwdb6CC4S4zJnN8O1A536tQicj_b-jzzyHKW9ftyux-mMXitwp1dpfc6aElfd_Fwj1yENr75GYnNrl7QGYXaW4y0F4oYk4Br9I0l3UVXKDfAEbT1RobN-gsihPxcwqYckFN6-lm1wJWhJ-mkEOTBBjF6dKHZHZ2-uXDed6LKuROyGKbN7UpKxUk8iC60ikfubMhhAjOEi4alCIOZUSxPsuYBUTXAKZRpgmOe885f0Qm7bINTwi1rFAxNtJIJ4UNFpzgnYui9ogUo8nI68GQetVxZ-jU8-ZKd2bXYHadzK55Rk7Q1uOVyHudDizXc90vI80iV9ZVFnCXFE5Fw2rmIScBDI2FtTEjR4OndL8YN_pX6GTk5XgalhH2RkwbwGjpmkaJRpUZedw5drwTUQiktWMZUXsu37vV_TPt1ddE1Y2EebWq4I_fjNHxH7Z4-u_HeEZusxSwVV6IIzLZrq_Dc8BGW_uiD_ifPJ8OMQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIdHZStEL7wpgYKMxA3SJn4kzrEgqgqpFQdWlJPl51KxpKt9CC1_PWMnWbHQA70mTuKMx_ZnefwbgNeVL2Xjap7jetblXLsGx0EucqOF5sZUhU_p3s7Oq9Mx_3ghLnagGs7CpKD9JGmZhukhOuxogRNNPAxGRR4hXua4BHThFuxWAhl8BLvj80_HX2MmufglxATan5ApmLzm4a1ZKIn1X0eY_wZK3lm1M73-qafTP2ahk3vwZah_F3zy_XC1NIf211_Sjjf_wftwtwdTctyVfAA7vn0It7tUletHMD5LUZee9GkmJgRpl6SorktvPfmBEE5m87jtE5uaxHj6CUEinRLdOrJYt0ia-GqCI3BKIEZibOpjGJ98-Pz-NO9TMuSWi2KZN7UuK-lFVFG0pZUuMGu89wGbmtugYyJjX4aY6s9QapAHGyQiqRtvmXOMsScwaq9a_xSIoYUMoRFaWMGNN9paZ23gtYucGXQGb4YmUrNOeUOlHXMmVWcshcZSyViKZfAutuKmZFTNTheu5hPVG1nRwKSxlUFqE9zKoGlNHboKQmwojAkZHAw-oPquvFAMoaiqOWJkBq82t7ETxp0V3Xo0WirTSN7IMoP9zmU2NeEFj6J4NAO55UxbVd2-015-S0LfUW6vlhV--O3G7_7DFs9uVvw57NHkdlVe8AMYLecr_wJJa2le9t3qN5guJNQ priority: 102 providerName: Unpaywall |
| Title | Machine learning for workpiece mass prediction using real and synthetic acoustic data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40467672 https://www.proquest.com/docview/3215674929 https://www.proquest.com/docview/3215984981 https://pubmed.ncbi.nlm.nih.gov/PMC12137869 https://www.nature.com/articles/s41598-025-03018-3.pdf https://doaj.org/article/2f38bc6b61754c8fa272d322193f0bbf |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxGP3QiuhL8e7Ydongmw6dyWUmeWylpQhdiriwPoVc28I6Lt0tsv_eL5npsouCPvRxJmEmnJPLCflyPoAPTail8i0vcT_rS268wnmQi9IaYbi1TRVyurfzcXM24V-mYrqR6ivFhPX2wD1whzQyaV1jcaUV3MloaEs99kIUHrGyNqbZt5JqYzPVu3pTxWs13JKpmDxc4EqVbpNRUaZdgCzZ1kqUDfv_pjL_DJZ8ctvNzeqXmc02VqLTZ7A7SEhy1Df9OTwI3Qt43CeVXL2EyXmOjwxkSAhxSVCXkhx_dR1cID9QLpP5TTqgSaSQFPl-SVA7zojpPFmsOtSE-GmCc2VO9UVSFOkrmJyefPt8Vg7JE0rHRbUsVWvqRgaR_A5d7aSPzNkQQkRSuIsmpRwOdUxJ-SylFpWbQu0ijQqOec8Yew073c8uvAViEeAYlTDCCW6DNc555yJvfVKE0RTw8Q5IPe89MnQ-22ZS97BrhF1n2DUr4Dhhva6Z_K3zC2RdD6zrf7FewP4dU3oYdAvNUL40LUfBV8D7dTEOl3QGYrqAoOU6SnIl6wLe9MSuW8IrnuzraAFyi_Ktpm6XdNdX2ZI7GeO1ssEff1r3jv_A4t19YLEHT2nu1k1Z8X3YWd7chgNUSks7gofttB3Bo-OT8cXXUR4i-DQZXxx9_w1s9xRh |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWi8IL7JGGAkeIJoieMkzsOEGGzq2FohtEp7M_4sk0ratZ2m_nP8bdw5SaECIV72mkSJc3e--9l3vh8hrwqXisqWPIb1rI25shX4QZ7HWuWKa10kLtC99QdFb8g_nefnG-RHdxYGyyo7nxgctZ0Y3CPfyyA2FSWHaP5uehkjaxRmVzsKDdVSK9j90GKsPdhx4pbXsISb7x9_BH2_Zuzo8OxDL25ZBmLD82QRV6VKC-FybAxoUiOsz4x2znkYPTdeITevSz2y12nGNECcCoK8UJUzmbUZbohCCNjiGa9g8bd1cDj4_GW1y4N5NJ5W7WmdJBN7c4iYeKqN5TGuRkScrUXEQBzwN7T7Z9Hm9lU9VctrNR7_FhGP7pI7LZSl7xvbu0c2XH2f3GrILZcPyLAf6jQdbYkpRhTwMQ11YBfOOPodYDudzjBRhMZBsQJ_RAHDjqmqLZ0va8Cm8GoKPjtQjlGsZn1Ihjci3kdks57U7gmhmiXC-ypXucm5dhqUbo3xvLSITL2KyJtOkHLa9OqQIceeCdmIXYLYZRC7zCJygLJePYl9tsOFyWwk22krmc-ENoUGnJdzI7xiJbPgAwH2-kRrH5HdTlOynfxz-ctUI_JydRumLeZiVO1AaOGZSvBKpBF53Ch2NRKecGyjxyIi1lS-NtT1O_XFt9AaHBv0laKAD79dWcd_yGLn37_xgmz3zvqn8vR4cPKU3GbBeIs44btkczG7cs8Aly3089b4Kfl60_PtJxRISxE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi3hcEG8CCxgJThA1cZzEPiAELNUuy644UKk342dZqaSl7WrVv8avY8ZJChUIcdlrkjbOeB6fPeP5CHlW-VxIV_MU1rMu5dpJ8IO8TI0uNTemynykezs-qQ5G_MO4HO-QH_1ZGCyr7H1idNRuZnGPfFBAbKpqDtF8ELqyiE_7w9fz7ykySGGmtafTaFXkyK_PYfm2fHW4D3P9nLHh-8_vDtKOYSC1vMxWqax1XglfYlNAm1vhQmGN9z7AyLkNGnl5fR6Quc4wZgDeSAjwQktvC-cK3AwF938Jfi2xnLAe15v9Hcyg8Vx253SyQgyWECvxPBsrU1yHiLTYioWRMuBvOPfPcs2rZ81cr8_1dPpbLBzeINc7EEvftFp3k-z45ha53NJarm-T0XGs0PS0o6SYUEDGNFaAnXrr6TcA7HS-wBQRqgXF2vsJBfQ6pbpxdLluAJXCX1Pw1pFsjGId6x0yuhDh3iW7zazx9wk1LBMhyFKXtuTGG22tszbw2iEmDTohL3pBqnnbpUPF7HohVCt2BWJXUeyqSMhblPXmSeywHS_MFhPVGaxioRDGVgYQXsmtCJrVzIH3A8AbMmNCQvb6mVKd2S_VLyVNyNPNbTBYzMLoxoPQ4jNScCnyhNxrJ3YzEp5xbKDHEiK2pnxrqNt3mtOvsSk4tuarRQUvfrnRjv-QxYN_f8YTcgWsTH08PDl6SK6xqLtVmvE9srtanPlHAMhW5nHUfEq-XLSp_QQGW0ir |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIdHZStEL7wpgYKMxA3SJn4kzrEgqgqpFQdWlJPl51KxpKt9CC1_PWMnWbHQA70mTuKMx_ZnefwbgNeVL2Xjap7jetblXLsGx0EucqOF5sZUhU_p3s7Oq9Mx_3ghLnagGs7CpKD9JGmZhukhOuxogRNNPAxGRR4hXua4BHThFuxWAhl8BLvj80_HX2MmufglxATan5ApmLzm4a1ZKIn1X0eY_wZK3lm1M73-qafTP2ahk3vwZah_F3zy_XC1NIf211_Sjjf_wftwtwdTctyVfAA7vn0It7tUletHMD5LUZee9GkmJgRpl6SorktvPfmBEE5m87jtE5uaxHj6CUEinRLdOrJYt0ia-GqCI3BKIEZibOpjGJ98-Pz-NO9TMuSWi2KZN7UuK-lFVFG0pZUuMGu89wGbmtugYyJjX4aY6s9QapAHGyQiqRtvmXOMsScwaq9a_xSIoYUMoRFaWMGNN9paZ23gtYucGXQGb4YmUrNOeUOlHXMmVWcshcZSyViKZfAutuKmZFTNTheu5hPVG1nRwKSxlUFqE9zKoGlNHboKQmwojAkZHAw-oPquvFAMoaiqOWJkBq82t7ETxp0V3Xo0WirTSN7IMoP9zmU2NeEFj6J4NAO55UxbVd2-015-S0LfUW6vlhV--O3G7_7DFs9uVvw57NHkdlVe8AMYLecr_wJJa2le9t3qN5guJNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+workpiece+mass+prediction+using+real+and+synthetic+acoustic+data&rft.jtitle=Scientific+reports&rft.au=D.+S.+Whittaker&rft.au=J.+Greg%C3%B3rio&rft.au=T.+F.+Byrne&rft.date=2025-06-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41598-025-03018-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2f38bc6b61754c8fa272d322193f0bbf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |