Machine learning for workpiece mass prediction using real and synthetic acoustic data

We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algor...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 19534 - 12
Main Authors Whittaker, D. S., Gregório, J., Byrne, T. F.
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 04.06.2025
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-03018-3

Cover

Abstract We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10 , and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.
AbstractList Abstract We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10− 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.
We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10− 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.
We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10 , and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.
We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10- 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple manufacturing process to predict their mass. We also report a simple technique to seed synthetic from real data for training and testing the algorithm. Work was performed in the frequency domain, with spectrally-resolved magnitudes fed as variables (or features) to the network. The mean absolute percentage deviation when predicting the mass of each of thirty-two workpieces of different material composition considering just real data was 19.2%. This fell to 8.7%, however, when the exercise was repeated making use of a significantly greater amount of these synthetic data to train and test it. Fractional uncertainty in measured mass is of the order of 10- 4, and so this serves well as a general proxy to test our approach. It could find application when data to augment algorithm performance must be obtained robustly, relatively quickly and without much computational effort in the wider context of waste minimisation and green manufacturing.
ArticleNumber 19534
Author Whittaker, D. S.
Byrne, T. F.
Gregório, J.
Author_xml – sequence: 1
  givenname: D. S.
  surname: Whittaker
  fullname: Whittaker, D. S.
– sequence: 2
  givenname: J.
  surname: Gregório
  fullname: Gregório, J.
– sequence: 3
  givenname: T. F.
  surname: Byrne
  fullname: Byrne, T. F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40467672$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNUREvpH2CBIrFhE_Arsb1CqOJRqYgNXVs3zvVMhowd7KTV_HucSalaVnjjK_v43HM_vyxOfPBYFK8peU8JVx-SoLVWFWF1RTihquLPijNGRF0xztjJo_q0uEhpR_KqmRZUvyhOBRGNbCQ7K26-g932HssBIfreb0oXYnkX4q-xR4vlHlIqx4hdb6c--HJOiyYiDCX4rkwHP21x6m0JNsxpKTqY4FXx3MGQ8OJ-Py9uvnz-efmtuv7x9ery03VlRU2mSkugjcK6lpxbalXnuG0R0WklhXUgJK-ROpLHaxlrSS00V1qBRsu7jnN-Xlytvl2AnRljv4d4MAF6czwIcWMg5lADGua4am3TNlTWwioHTLIu06GaO9K2Lnvx1Wv2IxzuYBgeDCkxC3OzMjeZuTkyN0uCj-urcW732Fn0U4ThSZSnN77fmk24NZRRLlWjs8O7e4cYfs-YJrPvk8VhAI8ZqeFsaSq0oln69h_pLszRZ8JHVSOFZovhm8eRHrL8_fQsYKvAxpBSRPc_g_4Ba3K_JA
Cites_doi 10.1109/ACCESS.2022.3185049
10.1109/WoSSPA.2013.6602399
10.1162/089976698300017467
10.1016/j.jmatprotec.2009.01.013
10.1038/s41377-020-0308-x
10.3390/s21196687
10.1016/j.jsv.2014.04.062
10.1016/j.ymssp.2007.09.012
10.1038/s41592-018-0019-x
10.1007/978-3-030-67936-1
10.1016/j.cirpj.2015.08.004
10.1088/0143-0807/31/3/003
10.1016/j.promfg.2020.10.053
10.1201/9781351132916
10.1007/978-3-031-43205-7
10.48550/arXiv.1506.02142
10.48550/arXiv.1908.09257
10.1186/s40537-023-00727-2
10.1016/j.neuroimage.2018.03.016
10.48550/arXiv.1605.08695
10.1007/s00170-008-1698-8
10.1093/mnrasl/slx008
10.1016/j.physa.2013.04.036
10.1016/j.ndteint.2006.09.006
10.1007/s11740-022-01113-2
10.1016/0165-1684(94)90029-9
10.1016/j.compind.2022.103782
10.1109/CVPR.2014.223
10.1007/s40436-021-00345-2
10.1016/j.jmapro.2019.10.020
10.1088/1742-6596/2438/1/012155
10.1080/14786440109462720
10.1007/s12206-016-0940-9
10.1016/j.procir.2013.09.010
10.3390/cmsf2022003007
10.1016/j.measurement.2022.111701
10.1016/j.measurement.2015.10.029
10.1115/1.4036350
10.1016/j.jmapro.2021.09.055
10.1016/j.compind.2018.04.015
10.1016/j.promfg.2020.05.134
10.48550/arXiv.1412.6980
10.1016/j.eswa.2023.119738
10.1098/rsta.2017.0237
10.1007/s10845-022-01963-8
ContentType Journal Article
Copyright 2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-03018-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (Proquest)
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_2f38bc6b61754c8fa272d322193f0bbf
10.1038/s41598-025-03018-3
PMC12137869
40467672
10_1038_s41598_025_03018_3
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
ALIPV
NPM
PMFND
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c450t-97a168e55733c1c8df3cbeeef9874cfa4735e1f0018b22b05493898a9ec3dd333
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:11 EDT 2025
Sun Oct 26 03:59:34 EDT 2025
Tue Sep 30 17:04:01 EDT 2025
Fri Sep 05 15:56:52 EDT 2025
Tue Oct 07 09:09:02 EDT 2025
Sun Jun 08 01:33:39 EDT 2025
Wed Oct 01 05:50:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Acoustic spectra
Machine learning (ML)
Manufacturing
Neural network
Synthetic data
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-97a168e55733c1c8df3cbeeef9874cfa4735e1f0018b22b05493898a9ec3dd333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/2f38bc6b61754c8fa272d322193f0bbf
PMID 40467672
PQID 3215674929
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2f38bc6b61754c8fa272d322193f0bbf
unpaywall_primary_10_1038_s41598_025_03018_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12137869
proquest_miscellaneous_3215984981
proquest_journals_3215674929
pubmed_primary_40467672
crossref_primary_10_1038_s41598_025_03018_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Scientific reports
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group
Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Portfolio
References AN Gorban (3018_CR46) 2018; 376
H Tercan (3018_CR3) 2022; 33
M Alabadi (3018_CR2) 2022; 10
GMA Acayaba (3018_CR41) 2015; 11
U Hassan (3018_CR44) 2010; 31
N Altman (3018_CR45) 2018; 15
FC Neto (3018_CR10) 2013; 12
K Zhu (3018_CR28) 2023; 144
3018_CR40
DR Salgado (3018_CR7) 2008; 43
VN Livina (3018_CR52) 2013; 392
L Li (3018_CR21) 2016; 79
3018_CR43
O Surucu (3018_CR4) 2023; 221
3018_CR42
K Ikuta (3018_CR49) 2022; 3
3018_CR17
P Comon (3018_CR35) 1994; 36
3018_CR50
L Alzubaidi (3018_CR29) 2023; 10
3018_CR51
PS Pai (3018_CR16) 2015; 22
B Schölkopf (3018_CR34) 1998; 10
C Du (3018_CR13) 2021; 9
3018_CR12
LV Amitonova (3018_CR38) 2020; 9
3018_CR11
K Pearson (3018_CR33) 1901; 2
D Wu (3018_CR23) 2017; 139
S Bagri (3018_CR26) 2021; 71
Z Li (3018_CR22) 2019; 48
I Kobyzev (3018_CR47) 2020
3018_CR6
M Malekian (3018_CR24) 2009; 209
3018_CR5
FJ Alonso (3018_CR18) 2008; 22
J Yu (3018_CR14) 2016; 30
3018_CR20
T Bergs (3018_CR25) 2020; 48
IM Sarivan (3018_CR8) 2020; 51
3018_CR39
H Boyes (3018_CR1) 2018; 101
DA Molitor (3018_CR27) 2022; 16
K Schawinski (3018_CR48) 2017; 467
3018_CR30
S Orhan (3018_CR15) 2007; 40
L Balsamo (3018_CR9) 2014; 333
F Artoni (3018_CR36) 2018; 175
3018_CR37
3018_CR32
3018_CR31
A Bahador (3018_CR19) 2022; 201
References_xml – volume: 10
  start-page: 66374
  year: 2022
  ident: 3018_CR2
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3185049
– ident: 3018_CR6
  doi: 10.1109/WoSSPA.2013.6602399
– volume: 10
  start-page: 299
  issue: 5
  year: 1998
  ident: 3018_CR34
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 209
  start-page: 4903
  issue: 10
  year: 2009
  ident: 3018_CR24
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2009.01.013
– volume: 9
  start-page: 81
  year: 2020
  ident: 3018_CR38
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-020-0308-x
– ident: 3018_CR20
  doi: 10.3390/s21196687
– volume: 333
  start-page: 4526
  issue: 19
  year: 2014
  ident: 3018_CR9
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.04.062
– volume: 22
  start-page: 735
  issue: 3
  year: 2008
  ident: 3018_CR18
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2007.09.012
– volume: 15
  start-page: 399
  year: 2018
  ident: 3018_CR45
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0019-x
– ident: 3018_CR11
  doi: 10.1007/978-3-030-67936-1
– volume: 11
  start-page: 62
  year: 2015
  ident: 3018_CR41
  publication-title: CIRP J. Manufact. Sci. Technol.
  doi: 10.1016/j.cirpj.2015.08.004
– volume: 31
  start-page: 453
  year: 2010
  ident: 3018_CR44
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/31/3/003
– volume: 51
  start-page: 373
  year: 2020
  ident: 3018_CR8
  publication-title: Proc. Manuf.
  doi: 10.1016/j.promfg.2020.10.053
– ident: 3018_CR42
– ident: 3018_CR30
  doi: 10.1201/9781351132916
– ident: 3018_CR31
– ident: 3018_CR50
  doi: 10.1007/978-3-031-43205-7
– ident: 3018_CR32
  doi: 10.48550/arXiv.1506.02142
– year: 2020
  ident: 3018_CR47
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.48550/arXiv.1908.09257
– volume: 22
  start-page: 652
  year: 2015
  ident: 3018_CR16
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 10
  start-page: 46
  year: 2023
  ident: 3018_CR29
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00727-2
– volume: 175
  start-page: 176
  year: 2018
  ident: 3018_CR36
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.016
– ident: 3018_CR39
  doi: 10.48550/arXiv.1605.08695
– volume: 43
  start-page: 40
  year: 2008
  ident: 3018_CR7
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-008-1698-8
– volume: 467
  start-page: L110
  issue: 1
  year: 2017
  ident: 3018_CR48
  publication-title: Mon. Notices R. Astron. Soc. Lett.
  doi: 10.1093/mnrasl/slx008
– volume: 392
  start-page: 3891
  issue: 18
  year: 2013
  ident: 3018_CR52
  publication-title: Phys. A
  doi: 10.1016/j.physa.2013.04.036
– volume: 40
  start-page: 121
  year: 2007
  ident: 3018_CR15
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2006.09.006
– volume: 16
  start-page: 481
  year: 2022
  ident: 3018_CR27
  publication-title: Prod. Eng. Res. Devel.
  doi: 10.1007/s11740-022-01113-2
– volume: 36
  start-page: 287
  issue: 3
  year: 1994
  ident: 3018_CR35
  publication-title: Sig. Process.
  doi: 10.1016/0165-1684(94)90029-9
– volume: 144
  start-page: 103782
  year: 2023
  ident: 3018_CR28
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103782
– ident: 3018_CR5
  doi: 10.1109/CVPR.2014.223
– ident: 3018_CR17
– volume: 9
  start-page: 206
  year: 2021
  ident: 3018_CR13
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-021-00345-2
– volume: 48
  start-page: 66
  year: 2019
  ident: 3018_CR22
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.10.020
– ident: 3018_CR51
  doi: 10.1088/1742-6596/2438/1/012155
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 3018_CR33
  publication-title: Phil. Mag.
  doi: 10.1080/14786440109462720
– volume: 30
  start-page: 4697
  issue: 10
  year: 2016
  ident: 3018_CR14
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-016-0940-9
– volume: 12
  start-page: 49
  year: 2013
  ident: 3018_CR10
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.09.010
– volume: 3
  start-page: 7
  issue: 1
  year: 2022
  ident: 3018_CR49
  publication-title: Comput. Sci. Math. Forum
  doi: 10.3390/cmsf2022003007
– volume: 201
  start-page: 111701
  year: 2022
  ident: 3018_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111701
– volume: 79
  start-page: 44
  year: 2016
  ident: 3018_CR21
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.10.029
– ident: 3018_CR40
– volume: 139
  start-page: 071018
  issue: 7
  year: 2017
  ident: 3018_CR23
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4036350
– ident: 3018_CR12
– volume: 71
  start-page: 679
  year: 2021
  ident: 3018_CR26
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.09.055
– volume: 101
  start-page: 1
  year: 2018
  ident: 3018_CR1
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.04.015
– volume: 48
  start-page: 947
  year: 2020
  ident: 3018_CR25
  publication-title: Proc. Manuf.
  doi: 10.1016/j.promfg.2020.05.134
– ident: 3018_CR43
  doi: 10.48550/arXiv.1412.6980
– volume: 221
  start-page: 119738
  year: 2023
  ident: 3018_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119738
– volume: 376
  start-page: 20170237
  year: 2018
  ident: 3018_CR46
  publication-title: Philosophical Trans. Royal Soc. A
  doi: 10.1098/rsta.2017.0237
– volume: 33
  start-page: 1879
  year: 2022
  ident: 3018_CR3
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01963-8
– ident: 3018_CR37
SSID ssj0000529419
Score 2.452962
Snippet We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a simple...
Abstract We apply a feedforward neural network using supervised learning to sound recordings obtained without specialised equipment as workpieces undergo a...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 19534
SubjectTerms Acoustic spectra
Acoustics
Algorithms
Datasets
Machine learning
Machine learning (ML)
Manufacturing
Manufacturing industry
Neural network
Neural networks
Spectrum analysis
Synthetic data
Waste management
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_OHqIv4rfRU1bwTcMl-5FsHkQ8ueMQrohYuLdlP-tBTWvbQ_rfO7P50KKIr0lok5nZmV8ys78fIa-qUKrG1yKH91mfC-MbyINC5tZII6ytipDk3i6m1flMfLyUlwdkOuyFwbHKISemRO2XDr-RH3OoTVUtoJq_W33PUTUKu6uDhIbppRX820QxdoMcMmTGmpDDk9Ppp8_jVxfsa4my6XfPFFwdb6CC4S4zJnN8O1A536tQicj_b-jzzyHKW9ftyux-mMXitwp1dpfc6aElfd_Fwj1yENr75GYnNrl7QGYXaW4y0F4oYk4Br9I0l3UVXKDfAEbT1RobN-gsihPxcwqYckFN6-lm1wJWhJ-mkEOTBBjF6dKHZHZ2-uXDed6LKuROyGKbN7UpKxUk8iC60ikfubMhhAjOEi4alCIOZUSxPsuYBUTXAKZRpgmOe885f0Qm7bINTwi1rFAxNtJIJ4UNFpzgnYui9ogUo8nI68GQetVxZ-jU8-ZKd2bXYHadzK55Rk7Q1uOVyHudDizXc90vI80iV9ZVFnCXFE5Fw2rmIScBDI2FtTEjR4OndL8YN_pX6GTk5XgalhH2RkwbwGjpmkaJRpUZedw5drwTUQiktWMZUXsu37vV_TPt1ddE1Y2EebWq4I_fjNHxH7Z4-u_HeEZusxSwVV6IIzLZrq_Dc8BGW_uiD_ifPJ8OMQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIdHZStEL7wpgYKMxA3SJn4kzrEgqgqpFQdWlJPl51KxpKt9CC1_PWMnWbHQA70mTuKMx_ZnefwbgNeVL2Xjap7jetblXLsGx0EucqOF5sZUhU_p3s7Oq9Mx_3ghLnagGs7CpKD9JGmZhukhOuxogRNNPAxGRR4hXua4BHThFuxWAhl8BLvj80_HX2MmufglxATan5ApmLzm4a1ZKIn1X0eY_wZK3lm1M73-qafTP2ahk3vwZah_F3zy_XC1NIf211_Sjjf_wftwtwdTctyVfAA7vn0It7tUletHMD5LUZee9GkmJgRpl6SorktvPfmBEE5m87jtE5uaxHj6CUEinRLdOrJYt0ia-GqCI3BKIEZibOpjGJ98-Pz-NO9TMuSWi2KZN7UuK-lFVFG0pZUuMGu89wGbmtugYyJjX4aY6s9QapAHGyQiqRtvmXOMsScwaq9a_xSIoYUMoRFaWMGNN9paZ23gtYucGXQGb4YmUrNOeUOlHXMmVWcshcZSyViKZfAutuKmZFTNTheu5hPVG1nRwKSxlUFqE9zKoGlNHboKQmwojAkZHAw-oPquvFAMoaiqOWJkBq82t7ETxp0V3Xo0WirTSN7IMoP9zmU2NeEFj6J4NAO55UxbVd2-015-S0LfUW6vlhV--O3G7_7DFs9uVvw57NHkdlVe8AMYLecr_wJJa2le9t3qN5guJNQ
  priority: 102
  providerName: Unpaywall
Title Machine learning for workpiece mass prediction using real and synthetic acoustic data
URI https://www.ncbi.nlm.nih.gov/pubmed/40467672
https://www.proquest.com/docview/3215674929
https://www.proquest.com/docview/3215984981
https://pubmed.ncbi.nlm.nih.gov/PMC12137869
https://www.nature.com/articles/s41598-025-03018-3.pdf
https://doaj.org/article/2f38bc6b61754c8fa272d322193f0bbf
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxGP3QiuhL8e7Ydongmw6dyWUmeWylpQhdiriwPoVc28I6Lt0tsv_eL5npsouCPvRxJmEmnJPLCflyPoAPTail8i0vcT_rS268wnmQi9IaYbi1TRVyurfzcXM24V-mYrqR6ivFhPX2wD1whzQyaV1jcaUV3MloaEs99kIUHrGyNqbZt5JqYzPVu3pTxWs13JKpmDxc4EqVbpNRUaZdgCzZ1kqUDfv_pjL_DJZ8ctvNzeqXmc02VqLTZ7A7SEhy1Df9OTwI3Qt43CeVXL2EyXmOjwxkSAhxSVCXkhx_dR1cID9QLpP5TTqgSaSQFPl-SVA7zojpPFmsOtSE-GmCc2VO9UVSFOkrmJyefPt8Vg7JE0rHRbUsVWvqRgaR_A5d7aSPzNkQQkRSuIsmpRwOdUxJ-SylFpWbQu0ijQqOec8Yew073c8uvAViEeAYlTDCCW6DNc555yJvfVKE0RTw8Q5IPe89MnQ-22ZS97BrhF1n2DUr4Dhhva6Z_K3zC2RdD6zrf7FewP4dU3oYdAvNUL40LUfBV8D7dTEOl3QGYrqAoOU6SnIl6wLe9MSuW8IrnuzraAFyi_Ktpm6XdNdX2ZI7GeO1ssEff1r3jv_A4t19YLEHT2nu1k1Z8X3YWd7chgNUSks7gofttB3Bo-OT8cXXUR4i-DQZXxx9_w1s9xRh
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWi8IL7JGGAkeIJoieMkzsOEGGzq2FohtEp7M_4sk0ratZ2m_nP8bdw5SaECIV72mkSJc3e--9l3vh8hrwqXisqWPIb1rI25shX4QZ7HWuWKa10kLtC99QdFb8g_nefnG-RHdxYGyyo7nxgctZ0Y3CPfyyA2FSWHaP5uehkjaxRmVzsKDdVSK9j90GKsPdhx4pbXsISb7x9_BH2_Zuzo8OxDL25ZBmLD82QRV6VKC-FybAxoUiOsz4x2znkYPTdeITevSz2y12nGNECcCoK8UJUzmbUZbohCCNjiGa9g8bd1cDj4_GW1y4N5NJ5W7WmdJBN7c4iYeKqN5TGuRkScrUXEQBzwN7T7Z9Hm9lU9VctrNR7_FhGP7pI7LZSl7xvbu0c2XH2f3GrILZcPyLAf6jQdbYkpRhTwMQ11YBfOOPodYDudzjBRhMZBsQJ_RAHDjqmqLZ0va8Cm8GoKPjtQjlGsZn1Ihjci3kdks57U7gmhmiXC-ypXucm5dhqUbo3xvLSITL2KyJtOkHLa9OqQIceeCdmIXYLYZRC7zCJygLJePYl9tsOFyWwk22krmc-ENoUGnJdzI7xiJbPgAwH2-kRrH5HdTlOynfxz-ctUI_JydRumLeZiVO1AaOGZSvBKpBF53Ch2NRKecGyjxyIi1lS-NtT1O_XFt9AaHBv0laKAD79dWcd_yGLn37_xgmz3zvqn8vR4cPKU3GbBeIs44btkczG7cs8Aly3089b4Kfl60_PtJxRISxE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi3hcEG8CCxgJThA1cZzEPiAELNUuy644UKk342dZqaSl7WrVv8avY8ZJChUIcdlrkjbOeB6fPeP5CHlW-VxIV_MU1rMu5dpJ8IO8TI0uNTemynykezs-qQ5G_MO4HO-QH_1ZGCyr7H1idNRuZnGPfFBAbKpqDtF8ELqyiE_7w9fz7ykySGGmtafTaFXkyK_PYfm2fHW4D3P9nLHh-8_vDtKOYSC1vMxWqax1XglfYlNAm1vhQmGN9z7AyLkNGnl5fR6Quc4wZgDeSAjwQktvC-cK3AwF938Jfi2xnLAe15v9Hcyg8Vx253SyQgyWECvxPBsrU1yHiLTYioWRMuBvOPfPcs2rZ81cr8_1dPpbLBzeINc7EEvftFp3k-z45ha53NJarm-T0XGs0PS0o6SYUEDGNFaAnXrr6TcA7HS-wBQRqgXF2vsJBfQ6pbpxdLluAJXCX1Pw1pFsjGId6x0yuhDh3iW7zazx9wk1LBMhyFKXtuTGG22tszbw2iEmDTohL3pBqnnbpUPF7HohVCt2BWJXUeyqSMhblPXmSeywHS_MFhPVGaxioRDGVgYQXsmtCJrVzIH3A8AbMmNCQvb6mVKd2S_VLyVNyNPNbTBYzMLoxoPQ4jNScCnyhNxrJ3YzEp5xbKDHEiK2pnxrqNt3mtOvsSk4tuarRQUvfrnRjv-QxYN_f8YTcgWsTH08PDl6SK6xqLtVmvE9srtanPlHAMhW5nHUfEq-XLSp_QQGW0ir
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIdHZStEL7wpgYKMxA3SJn4kzrEgqgqpFQdWlJPl51KxpKt9CC1_PWMnWbHQA70mTuKMx_ZnefwbgNeVL2Xjap7jetblXLsGx0EucqOF5sZUhU_p3s7Oq9Mx_3ghLnagGs7CpKD9JGmZhukhOuxogRNNPAxGRR4hXua4BHThFuxWAhl8BLvj80_HX2MmufglxATan5ApmLzm4a1ZKIn1X0eY_wZK3lm1M73-qafTP2ahk3vwZah_F3zy_XC1NIf211_Sjjf_wftwtwdTctyVfAA7vn0It7tUletHMD5LUZee9GkmJgRpl6SorktvPfmBEE5m87jtE5uaxHj6CUEinRLdOrJYt0ia-GqCI3BKIEZibOpjGJ98-Pz-NO9TMuSWi2KZN7UuK-lFVFG0pZUuMGu89wGbmtugYyJjX4aY6s9QapAHGyQiqRtvmXOMsScwaq9a_xSIoYUMoRFaWMGNN9paZ23gtYucGXQGb4YmUrNOeUOlHXMmVWcshcZSyViKZfAutuKmZFTNTheu5hPVG1nRwKSxlUFqE9zKoGlNHboKQmwojAkZHAw-oPquvFAMoaiqOWJkBq82t7ETxp0V3Xo0WirTSN7IMoP9zmU2NeEFj6J4NAO55UxbVd2-015-S0LfUW6vlhV--O3G7_7DFs9uVvw57NHkdlVe8AMYLecr_wJJa2le9t3qN5guJNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+workpiece+mass+prediction+using+real+and+synthetic+acoustic+data&rft.jtitle=Scientific+reports&rft.au=D.+S.+Whittaker&rft.au=J.+Greg%C3%B3rio&rft.au=T.+F.+Byrne&rft.date=2025-06-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41598-025-03018-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2f38bc6b61754c8fa272d322193f0bbf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon