Wideband Microstrip Ring Resonator Bandpass Filters Under Multiple Resonances

A new class of wideband microstrip bandpass filters is proposed under multiple resonances of an asymmetric ring resonator. Two capacitive coupling elements are placed at two perpendicular positions of a squared ring, whereas a pair of open-circuited stubs is formed in the symmetrical plane of these...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 55; no. 10; pp. 2176 - 2182
Main Authors Sheng Sun, Sheng Sun, Lei Zhu, Lei Zhu
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2007.906510

Cover

More Information
Summary:A new class of wideband microstrip bandpass filters is proposed under multiple resonances of an asymmetric ring resonator. Two capacitive coupling elements are placed at two perpendicular positions of a squared ring, whereas a pair of open-circuited stubs is formed in the symmetrical plane of these two excited ports similar to a dual-mode ring filter in shape. By stretching the paired stubs close to one-eighth of a wavelength, the first two even-order resonances move down to be quasi-equally located at two sides of the first odd-order resonance, thus forming a triple-resonance ring resonator. As interdigital coupled lines are installed at two ports instead of lumped capacitors, two extra resonances can be moved into passband, thereby making up a quintuple-resonance ring resonator. To provide an insight into their operating mechanism, these ring resonators are characterized in terms of transmission line theory. Afterwards, various wideband microstrip ring resonator bandpass filters with one or two asymmetric ring resonators are optimally designed and fabricated. Simulated results are confirmed via experiment, showing good wideband filtering performance with widened/deepened upper stopband and sharpened rejection skirts outside the wide passband.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2007.906510