Analysis of upper limb propulsion in young swimmers in front-crawl through Statistical Parametric Mapping

This study aimed to: (i) verify the within-subject effect of the dominant and non-dominant upper limb propulsion during consecutive arm-pulls through discrete (average) and continuous analysis (SPM), and; (ii) compare young swimmers’ propulsion between both upper limbs through discrete (average) and...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 159; p. 111792
Main Authors Morais, Jorge E, Barbosa, Tiago M, Lopes, Tiago, Gourgoulis, Vassilios, Nikodelis, Thomas, Marinho, Daniel A
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2023.111792

Cover

More Information
Summary:This study aimed to: (i) verify the within-subject effect of the dominant and non-dominant upper limb propulsion during consecutive arm-pulls through discrete (average) and continuous analysis (SPM), and; (ii) compare young swimmers’ propulsion between both upper limbs through discrete (average) and continuous analysis (Statistical Parametric Mapping – SPM). The sample consisted of 17 young male swimmers (age = 16.02 ± 0.61-years) who regularly participate in national and international level competitions. A set of kinematic and propulsion variables were measured during a 25-m maximal trial in front-crawl. Statistical analysis of propulsion was performed using discrete variables and through SPM. Swimming velocity showed a significant decrease over time. A significant interaction between the “time” (consecutive arm-pulls) and “side” (dominant vs. non-dominant) effects was observed in both statistical analyzes. Only the dominant upper limb demonstrated a significant “time” effect with a significant difference (p < 0.05) between the first and third arm-pulls. SPM indicated that the “time” effect was observed between the ∼ 34% and ∼ 42% of the arm-pull. The differences between the first and third arm-pull were verified between the ∼ 32% and ∼ 43% of the arm-pull. A non-significant “side” effect was verified in both analyzes. Therefore, SPM analysis provided more sensitive and accurate outputs than discrete analysis. This will allow coaches to design specific training drills focused on specific moments of the arm-pull.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2023.111792