FITC-induced murine pulmonary inflammation: CC10 up-regulation and concurrent Shh expression

We describe an immunohistochemical study of the acute and chronic effects of fluorescein isothiocyanate (FITC) on Sonic hedgehog (Shh) expression and Clara cell secretory protein (CC10) up-regulation in murine lung. FITC was dissolved in PBS and instilled non-surgically into adult mouse lungs via th...

Full description

Saved in:
Bibliographic Details
Published inCell biology international Vol. 29; no. 10; pp. 868 - 876
Main Authors Fisher, Carolyn E., Ahmad, Sharon A., Fitch, Paul M., Lamb, Jonathan R., Howie, Sarah E.M.
Format Journal Article
LanguageEnglish
Published Oxford, UK Elsevier Ltd 01.10.2005
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1065-6995
1095-8355
DOI10.1016/j.cellbi.2005.07.002

Cover

More Information
Summary:We describe an immunohistochemical study of the acute and chronic effects of fluorescein isothiocyanate (FITC) on Sonic hedgehog (Shh) expression and Clara cell secretory protein (CC10) up-regulation in murine lung. FITC was dissolved in PBS and instilled non-surgically into adult mouse lungs via the trachea. During the acute phase (120 h) of the FITC response, CC10 staining within Clara cells increased markedly but the protein did not leak into the tissue spaces or the airways, and no fibrosis was apparent. An immune response was evident, characterised by infiltrating T and B lymphocytes. There was no concomitant expression of Shh. During the chronic phase (6 months post-instillation), significant tissue degeneration was observed in the airways. There was moderate to severe fibrosis in the lung fields that stained positively for FITC and significant inflammatory cell infiltrate was observed. Shh was expressed, and CC10 showed multiple sites of diffuse staining consistent with release from Clara cells into alveolar air spaces. PBS controls showed no fibrosis after 6 months, but there was positive Shh staining below the airway epithelia and minimal extracellular CC10 staining. The results may throw some light on the role of CC10 in pulmonary inflammation. The relationship of Shh expression and CC10 leakage to lung damage and repair is discussed.
Bibliography:ArticleID:CBIN1577
ark:/67375/WNG-7R640K0H-1
istex:0A836212B3CFB6B31C4CBDF64FCB90742D9ECD74
Present address: GlaxoSmithKline, Translational Medicine and Technology, Clinical Pharmacology and Discovery Medicine, Room 5123, 891‐995 Greenford Road, Greenford, Middlesex UB6 0HE.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1065-6995
1095-8355
DOI:10.1016/j.cellbi.2005.07.002