Animal model of intestinal anti-inflammatory effect of ginger-cinnamon complex

This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal inflammation. The mice were administered either distilled water or ginger extract (GE), cinnamon subcritical water extract (CSWE), low GE + CSWE (GCL)...

Full description

Saved in:
Bibliographic Details
Published inFood science and biotechnology Vol. 30; no. 9; pp. 1249 - 1256
Main Authors Im, Jin A, Kim, Min Seo, Kwon, Oran, shin, Jae-Ho, Kim, Ji Yeon
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2021
Springer Nature B.V
한국식품과학회
Subjects
Online AccessGet full text
ISSN1226-7708
2092-6456
2092-6456
DOI10.1007/s10068-021-00965-1

Cover

Abstract This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal inflammation. The mice were administered either distilled water or ginger extract (GE), cinnamon subcritical water extract (CSWE), low GE + CSWE (GCL), and high GE + CSWE (GCH) for 21 days and drinking water containing 5% DSS for the final 7 days to induce intestinal inflammation. We assessed the change of body weight, disease activity index (DAI), histopathological scores, myeloperoxidase (MPO) activity, and mRNA levels. Compared with the DSS group, the GCH group showed increased body weight, inhibited intestinal shortening, and decreased DAI and histopathological score of intestinal inflammation, which was similar to that for the control group. It inhibited MPO activity as well as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels. Therefore, the ginger–cinnamon complex helps to improve intestine inflammation, which is beneficial for gut health.
AbstractList This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal inflammation. The mice were administered either distilled water or ginger extract (GE), cinnamon subcritical water extract (CSWE), low GE + CSWE (GCL), and high GE + CSWE (GCH) for 21 days and drinking water containing 5% DSS for the final 7 days to induce intestinal inflammation. We assessed the change of body weight, disease activity index (DAI), histopathological scores, myeloperoxidase (MPO) activity, and mRNA levels. Compared with the DSS group, the GCH group showed increased body weight, inhibited intestinal shortening, and decreased DAI and histopathological score of intestinal inflammation, which was similar to that for the control group. It inhibited MPO activity as well as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels. Therefore, the ginger-cinnamon complex helps to improve intestine inflammation, which is beneficial for gut health.This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal inflammation. The mice were administered either distilled water or ginger extract (GE), cinnamon subcritical water extract (CSWE), low GE + CSWE (GCL), and high GE + CSWE (GCH) for 21 days and drinking water containing 5% DSS for the final 7 days to induce intestinal inflammation. We assessed the change of body weight, disease activity index (DAI), histopathological scores, myeloperoxidase (MPO) activity, and mRNA levels. Compared with the DSS group, the GCH group showed increased body weight, inhibited intestinal shortening, and decreased DAI and histopathological score of intestinal inflammation, which was similar to that for the control group. It inhibited MPO activity as well as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels. Therefore, the ginger-cinnamon complex helps to improve intestine inflammation, which is beneficial for gut health.
This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal inflammation. The mice were administered either distilled water or ginger extract (GE), cinnamon subcritical water extract (CSWE), low GE + CSWE (GCL), and high GE + CSWE (GCH) for 21 days and drinking water containing 5% DSS for the final 7 days to induce intestinal inflammation. We assessed the change of body weight, disease activity index (DAI), histopathological scores, myeloperoxidase (MPO) activity, and mRNA levels. Compared with the DSS group, the GCH group showed increased body weight, inhibited intestinal shortening, and decreased DAI and histopathological score of intestinal inflammation, which was similar to that for the control group. It inhibited MPO activity as well as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels. Therefore, the ginger–cinnamon complex helps to improve intestine inflammation, which is beneficial for gut health.
This study evaluated the anti-inflammatoryeffect of ginger-cinnamon mixture using an animal modelof dextran sulfate sodium (DSS)-induced intestinalinflammation. The mice were administered either distilledwater or ginger extract (GE), cinnamon subcritical waterextract (CSWE), low GE ? CSWE (GCL), and highGE ? CSWE (GCH) for 21 days and drinking water containing5% DSS for the final 7 days to induce intestinalinflammation. We assessed the change of body weight,disease activity index (DAI), histopathological scores,myeloperoxidase (MPO) activity, and mRNA levels. Compared with the DSS group, the GCH group showedincreased body weight, inhibited intestinal shortening, anddecreased DAI and histopathological score of intestinalinflammation, which was similar to that for the controlgroup. It inhibited MPO activity as well as interleukin (IL)-1b, IL-6, and tumor necrosis factor-a mRNA levels. Therefore, the ginger–cinnamon complex helps to improveintestine inflammation, which is beneficial for gut health. KCI Citation Count: 2
This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal inflammation. The mice were administered either distilled water or ginger extract (GE), cinnamon subcritical water extract (CSWE), low GE + CSWE (GCL), and high GE + CSWE (GCH) for 21 days and drinking water containing 5% DSS for the final 7 days to induce intestinal inflammation. We assessed the change of body weight, disease activity index (DAI), histopathological scores, myeloperoxidase (MPO) activity, and mRNA levels. Compared with the DSS group, the GCH group showed increased body weight, inhibited intestinal shortening, and decreased DAI and histopathological score of intestinal inflammation, which was similar to that for the control group. It inhibited MPO activity as well as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels. Therefore, the ginger–cinnamon complex helps to improve intestine inflammation, which is beneficial for gut health.
Author shin, Jae-Ho
Kim, Ji Yeon
Im, Jin A
Kim, Min Seo
Kwon, Oran
Author_xml – sequence: 1
  givenname: Jin A
  surname: Im
  fullname: Im, Jin A
  organization: Department of Food Science and Technology, Seoul National University of Science and Technology
– sequence: 2
  givenname: Min Seo
  surname: Kim
  fullname: Kim, Min Seo
  organization: Department of Food Science and Technology, Seoul National University of Science and Technology
– sequence: 3
  givenname: Oran
  surname: Kwon
  fullname: Kwon, Oran
  organization: Department of Nutritional Science and Food Management, Ewha Womans University
– sequence: 4
  givenname: Jae-Ho
  surname: shin
  fullname: shin, Jae-Ho
  organization: Department of Biomedical Laboratory Science, Eulji University
– sequence: 5
  givenname: Ji Yeon
  orcidid: 0000-0002-4316-2726
  surname: Kim
  fullname: Kim, Ji Yeon
  email: jiyeonk@seoultech.ac.kr
  organization: Department of Food Science and Technology, Seoul National University of Science and Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002753861$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkstu1DAUhi1URKeFF2AViQ0sAr7FdjZIo4pLpQokVNbWGedkcJvYg5MU5u1xJiNVdFHY-Ej295_Lf3xGTkIMSMhLRt8ySvW7IZ_KlJSzktJaVSV7Qlac1rxUslInZMU4V6XW1JySs2G4yTTjWj4jp0IqKgwXK_JlHXwPXdHHBrsitoUPIw6jD_kOwuhLH9oO-h7GmPYFti26cca2Pmwxlc6HAH0MhYv9rsPfz8nTFroBXxzjOfn-8cP1xefy6uuny4v1VemkNGOpabtpKCqoldAVB4aGM6mBYlMLJYFXHHWrNtQ5QJAGJTQGlFCIrQJHxTl5s-QNqbW3ztsI_hC30d4mu_52fWlroyjnIrNiYaewg_0v6Dq7S3notLeM2tlJuzhps5P24KRlWfV-Ue2mTY-NwzAmuFfO9f5-Cf5Hrn5njeTCaJ0TvD4mSPHnlD21vR8cdh0EjNNgeR5HVbWo2b_RStd5rZSajL56gN7EKeVtHSjKpKn4bI9ZKJfiMCRsrfMjjD7Orfru8bn5A-l_mXW0eMjw_DHuu3pE9Qdp7dcH
CitedBy_id crossref_primary_10_1016_j_jep_2024_117733
crossref_primary_10_18231_j_ctppc_2022_028
crossref_primary_10_1007_s10068_023_01292_3
crossref_primary_10_1021_acsptsci_2c00104
Cites_doi 10.5352/JLS.2016.26.9.1082
10.1016/j.biortech.2007.07.050
10.3748/wjg.v17.i8.976
10.1007/s10068-018-0438-6
10.1111/all.12122
10.1016/0378-8741(89)90085-8
10.2337/diacare.26.12.3215
10.1016/S0378-8741(98)00026-9
10.1007/s10068-019-00649-x
10.1186/1471-2407-10-392
10.3945/jn.108.100495
10.1080/07315724.2009.10719756
10.1097/01.MIB.0000195385.19268.68
10.4162/nrp.2015.9.1.3
10.3839/jabc.2017.050
10.7759/cureus.1004
10.1054/plef.2002.0441
10.1007/s10068-019-00616-6
10.1016/0167-5699(96)80606-2
10.1016/j.jnutbio.2015.11.015
10.1007/s003840050178
10.1046/j.1365-2249.1998.00728.x
10.2337/dc07-1711
10.1089/jmf.2005.8.149
10.1136/gut.2004.043372
10.1186/1471-2407-10-210
10.1590/S0365-05962012000500001
10.1089/jmf.2005.8.125
ContentType Journal Article
Copyright The Korean Society of Food Science and Technology 2021
The Korean Society of Food Science and Technology 2021.
Copyright_xml – notice: The Korean Society of Food Science and Technology 2021
– notice: The Korean Society of Food Science and Technology 2021.
DBID AAYXX
CITATION
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ACYCR
DOI 10.1007/s10068-021-00965-1
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic




AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2092-6456
EndPage 1256
ExternalDocumentID oai_kci_go_kr_ARTI_9860223
oai:pubmedcentral.nih.gov:8423877
PMC8423877
10_1007_s10068_021_00965_1
GrantInformation_xml – fundername: korea institute of planning and evaluation for technology in food, agriculture, forestry and fisheries
  grantid: 116012-3
  funderid: http://dx.doi.org/10.13039/501100003668
– fundername: ;
  grantid: 116012-3
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
29H
2KG
2VQ
30V
4.4
406
408
40D
5GY
67Z
96X
9ZL
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AOIJS
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HG6
HMJXF
HRMNR
HYE
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
LLZTM
M1Z
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PT4
R9I
RLLFE
ROL
RPM
RSV
S1Z
S27
S3B
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z7V
Z7W
ZMTXR
ZZE
~A9
62Y
85H
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7X8
7S9
L.6
5PM
7X2
ABJCF
ADTOC
AEUYN
ATCPS
BGLVJ
CCPQU
M0K
M7S
PHGZM
PHGZT
PQGLB
PTHSS
UNPAY
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
Z7Z
Z83
ID FETCH-LOGICAL-c448t-70fbd0e6a963752a1e82147a0ed9364a252e7f6b0ccaea48e4ad8a636eef6ac03
IEDL.DBID U2A
ISSN 1226-7708
2092-6456
IngestDate Tue Nov 21 21:31:10 EST 2023
Sun Oct 26 03:46:35 EDT 2025
Tue Sep 30 15:33:04 EDT 2025
Thu Sep 04 18:26:49 EDT 2025
Fri Sep 05 10:33:21 EDT 2025
Tue Oct 07 14:11:02 EDT 2025
Wed Oct 01 05:02:59 EDT 2025
Thu Apr 24 23:04:55 EDT 2025
Fri Feb 21 02:48:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Ginger
Extract mixtures
Cinnamon
Intestine
Anti-inflammatory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-70fbd0e6a963752a1e82147a0ed9364a252e7f6b0ccaea48e4ad8a636eef6ac03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4316-2726
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8423877
PMID 34603823
PQID 2570148520
PQPubID 2043650
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9860223
unpaywall_primary_10_1007_s10068_021_00965_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8423877
proquest_miscellaneous_2636659391
proquest_miscellaneous_2579092008
proquest_journals_2570148520
crossref_citationtrail_10_1007_s10068_021_00965_1
crossref_primary_10_1007_s10068_021_00965_1
springer_journals_10_1007_s10068_021_00965_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Food science and biotechnology
PublicationTitleAbbrev Food Sci Biotechnol
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
한국식품과학회
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: 한국식품과학회
References Cha J, Kim C-T, Kim T-E, Cho Y-J. Optimization of subcritical extraction process for cinnamon (Cinnamomum Cassia Blume) using response surface methodology. Food Science and Biotechnology. 28(6): 1703-1711 (2019)
Kanuri G, Weber S, Volynets V, Spruss A, Bischoff SC, Bergheim I. Cinnamon extract protects against acute alcohol-induced liver steatosis in mice. The Journal of Nutrition. 139: 482-487 (2009)
Shen C-L, Hong K-J, Kim SW. Comparative effects of ginger root (Zingiber officinale Rosc.) on the production of inflammatory mediators in normal and osteoarthrotic sow chondrocytes. Journal of Medicinal Food. 8(2): 149-153 (2005)
Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunology Today. 17(3): 138-146 (1996)
Kim CY. Inhibition of interleukin-1α-induced intestinal epithelial tight junction permeability by curcumin treatment in Caco-2 Cells in Caco-2 cells. Journal of Life Science. 26(9): 1082-1087 (2016)
Kwon H-K, Hwang J-S, So J-S, Lee C-G, Sahoo A, Ryu J-H, Jeon WK, Ko BS, Im C-R, Lee S-H, Park ZY, Im S-H. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1. BMC Cancer. 10(1): 1-10 (2010)
Schottelius A, Baldwin Jr A. A role for transcription factor NF-kB in intestinal inflammation. International Journal of Colorectal Disease. 14(1): 18-28 (1999)
Kwon H-K, Hwang J-S, Lee C-G, So JS, Sahoo A, Im C-R, Jeon WK, Ko BS, Lee SH, Park ZY, Im SH. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells. World Journal of Gastroenterology: WJG. 17: 976 (2011)
Kim MJ, Kim MS, Kang ST, Kim JY. Effect of ginger and cinnamon extract mixtures on the growth of intestinal bacteria and intestinal inflammation. Journal of Applied Biological Chemistry. 60: 321-326 (2017)
Khan A, Safdar M, Khan MMA, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 26: 3215-3218 (2003)
Kim J, Kim D. Nutritional composition containing ginger extract for enhancing tight junctions in intestinal cells and prepeparing method thereof. Korea Patent 10-2016 (2016)
Cooper HS, Murthy S, Shah R, Sedergran D. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation; A Journal of Technical Methods and Pathology. 69: 238-249 (1993)
Hagenlocher Y, Hösel A, Bischoff SC, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10−/− colitis. The Journal of Nutritional Biochemistry. 30: 85-92 (2016)
Thomson M, Al-Qattan K, Al-Sawan S, Alnaqeeb M, Khan I, Ali M. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins, Leukotrienes and Essential Fatty Acids. 67: 475-478 (2002)
Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. Journal of Medicinal Food. 8(2): 125-132 (2005)
Roussel A-M, Hininger I, Benaraba R, Ziegenfuss TN, Anderson RA. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. Journal of the American College of Nutrition. 28(1): 16-21 (2009)
Rees V. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical & Experimental Immunology. 114: 385-391 (1998)
Baker WL, Gutierrez-Williams G, White CM, Kluger J, Coleman CI. Effect of cinnamon on glucose control and lipid parameters. Diabetes Care. 31: 41-43 (2008)
Carter MJ, Lobo AJ, Travis SP. Guidelines for the management of inflammatory bowel disease in adults. Gut. 53: v1-v16 (2004)
Kim MS, Kim JY. Ginger attenuates inflammation in a mouse model of dextran sulfate sodium-induced colitis. Food Science and Biotechnology. 27(5): 1493-1501 (2018)
Kim K-M, Kim Y-S, Lim JY, Min SJ, Ko H-C, Kim S-J, Kim Y. Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells. Nutrition Research and Practice. 9: 3 (2015)
Bhandari U, Sharma J, Zafar R. The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits. Journal of Ethnopharmacology. 61(2): 167-171 (1998)
Brotas AM, Cunha JMT, Lago EHJ, Machado CCN, Carneiro SCdS. Tumor necrosis factor-alpha and the cytokine network in psoriasis. Anais brasileiros de dermatologia. 87: 673-683 (2012)
Hansberry DR, Shah K, Agarwal P, Agarwal N. Fecal myeloperoxidase as a biomarker for inflammatory bowel disease. Cureus. 9(1): e1004 (2017)
Mascolo N, Jain R, Jain S, Capasso F. Ethnopharmacologic investigation of ginger (Zingiber officinale). Journal of Ethnopharmacology. 27(1-2): 129-140 (1989)
Tung Y-T, Chua M-T, Wang S-Y, Chang S-T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology. 99: 3908-3913 (2008)
Park S-H, Jung S-J, Choi E-K, Ha K-C, Baek H-I, Park Y-K, Han K-H, Jeong S-Y, Oh J-H, Cha Y-S, Park B-H, Chae S-W. The effects of steamed ginger ethanolic extract on weight and body fat loss: a randomized, double-blind, placebo-controlled clinical trial. Food Science and Biotechnology. 29: 265-273 (2020)
Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflammatory Bowel Diseases. 12: S3-S9 (2006)
Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-Ghanekar R. Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer. 10(1): 1-12 (2010)
Hagenlocher Y, Bergheim I, Zacheja S, Schäffer M, Bischoff S, Lorentz A. Cinnamon extract inhibits degranulation and de novo synthesis of inflammatory mediators in mast cells. Allergy. 68: 490-497 (2013)
965_CR19
965_CR17
965_CR18
965_CR15
965_CR16
965_CR13
965_CR14
965_CR11
965_CR12
965_CR10
965_CR30
965_CR9
965_CR8
965_CR7
965_CR6
965_CR5
965_CR4
965_CR3
965_CR28
965_CR2
965_CR29
965_CR1
965_CR26
965_CR27
965_CR24
965_CR25
965_CR22
965_CR23
965_CR20
965_CR21
References_xml – reference: Cooper HS, Murthy S, Shah R, Sedergran D. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation; A Journal of Technical Methods and Pathology. 69: 238-249 (1993)
– reference: Kanuri G, Weber S, Volynets V, Spruss A, Bischoff SC, Bergheim I. Cinnamon extract protects against acute alcohol-induced liver steatosis in mice. The Journal of Nutrition. 139: 482-487 (2009)
– reference: Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflammatory Bowel Diseases. 12: S3-S9 (2006)
– reference: Cha J, Kim C-T, Kim T-E, Cho Y-J. Optimization of subcritical extraction process for cinnamon (Cinnamomum Cassia Blume) using response surface methodology. Food Science and Biotechnology. 28(6): 1703-1711 (2019)
– reference: Kim K-M, Kim Y-S, Lim JY, Min SJ, Ko H-C, Kim S-J, Kim Y. Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells. Nutrition Research and Practice. 9: 3 (2015)
– reference: Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunology Today. 17(3): 138-146 (1996)
– reference: Schottelius A, Baldwin Jr A. A role for transcription factor NF-kB in intestinal inflammation. International Journal of Colorectal Disease. 14(1): 18-28 (1999)
– reference: Thomson M, Al-Qattan K, Al-Sawan S, Alnaqeeb M, Khan I, Ali M. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins, Leukotrienes and Essential Fatty Acids. 67: 475-478 (2002)
– reference: Park S-H, Jung S-J, Choi E-K, Ha K-C, Baek H-I, Park Y-K, Han K-H, Jeong S-Y, Oh J-H, Cha Y-S, Park B-H, Chae S-W. The effects of steamed ginger ethanolic extract on weight and body fat loss: a randomized, double-blind, placebo-controlled clinical trial. Food Science and Biotechnology. 29: 265-273 (2020)
– reference: Kwon H-K, Hwang J-S, Lee C-G, So JS, Sahoo A, Im C-R, Jeon WK, Ko BS, Lee SH, Park ZY, Im SH. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells. World Journal of Gastroenterology: WJG. 17: 976 (2011)
– reference: Kim MS, Kim JY. Ginger attenuates inflammation in a mouse model of dextran sulfate sodium-induced colitis. Food Science and Biotechnology. 27(5): 1493-1501 (2018)
– reference: Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-Ghanekar R. Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer. 10(1): 1-12 (2010)
– reference: Brotas AM, Cunha JMT, Lago EHJ, Machado CCN, Carneiro SCdS. Tumor necrosis factor-alpha and the cytokine network in psoriasis. Anais brasileiros de dermatologia. 87: 673-683 (2012)
– reference: Khan A, Safdar M, Khan MMA, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 26: 3215-3218 (2003)
– reference: Shen C-L, Hong K-J, Kim SW. Comparative effects of ginger root (Zingiber officinale Rosc.) on the production of inflammatory mediators in normal and osteoarthrotic sow chondrocytes. Journal of Medicinal Food. 8(2): 149-153 (2005)
– reference: Bhandari U, Sharma J, Zafar R. The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits. Journal of Ethnopharmacology. 61(2): 167-171 (1998)
– reference: Kim MJ, Kim MS, Kang ST, Kim JY. Effect of ginger and cinnamon extract mixtures on the growth of intestinal bacteria and intestinal inflammation. Journal of Applied Biological Chemistry. 60: 321-326 (2017)
– reference: Mascolo N, Jain R, Jain S, Capasso F. Ethnopharmacologic investigation of ginger (Zingiber officinale). Journal of Ethnopharmacology. 27(1-2): 129-140 (1989)
– reference: Carter MJ, Lobo AJ, Travis SP. Guidelines for the management of inflammatory bowel disease in adults. Gut. 53: v1-v16 (2004)
– reference: Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. Journal of Medicinal Food. 8(2): 125-132 (2005)
– reference: Tung Y-T, Chua M-T, Wang S-Y, Chang S-T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology. 99: 3908-3913 (2008)
– reference: Hagenlocher Y, Bergheim I, Zacheja S, Schäffer M, Bischoff S, Lorentz A. Cinnamon extract inhibits degranulation and de novo synthesis of inflammatory mediators in mast cells. Allergy. 68: 490-497 (2013)
– reference: Hagenlocher Y, Hösel A, Bischoff SC, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10−/− colitis. The Journal of Nutritional Biochemistry. 30: 85-92 (2016)
– reference: Kwon H-K, Hwang J-S, So J-S, Lee C-G, Sahoo A, Ryu J-H, Jeon WK, Ko BS, Im C-R, Lee S-H, Park ZY, Im S-H. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1. BMC Cancer. 10(1): 1-10 (2010)
– reference: Kim CY. Inhibition of interleukin-1α-induced intestinal epithelial tight junction permeability by curcumin treatment in Caco-2 Cells in Caco-2 cells. Journal of Life Science. 26(9): 1082-1087 (2016)
– reference: Kim J, Kim D. Nutritional composition containing ginger extract for enhancing tight junctions in intestinal cells and prepeparing method thereof. Korea Patent 10-2016 (2016)
– reference: Roussel A-M, Hininger I, Benaraba R, Ziegenfuss TN, Anderson RA. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. Journal of the American College of Nutrition. 28(1): 16-21 (2009)
– reference: Hansberry DR, Shah K, Agarwal P, Agarwal N. Fecal myeloperoxidase as a biomarker for inflammatory bowel disease. Cureus. 9(1): e1004 (2017)
– reference: Rees V. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical & Experimental Immunology. 114: 385-391 (1998)
– reference: Baker WL, Gutierrez-Williams G, White CM, Kluger J, Coleman CI. Effect of cinnamon on glucose control and lipid parameters. Diabetes Care. 31: 41-43 (2008)
– ident: 965_CR14
  doi: 10.5352/JLS.2016.26.9.1082
– ident: 965_CR30
  doi: 10.1016/j.biortech.2007.07.050
– ident: 965_CR20
  doi: 10.3748/wjg.v17.i8.976
– ident: 965_CR18
  doi: 10.1007/s10068-018-0438-6
– ident: 965_CR8
  doi: 10.1111/all.12122
– ident: 965_CR22
  doi: 10.1016/0378-8741(89)90085-8
– ident: 965_CR13
  doi: 10.2337/diacare.26.12.3215
– ident: 965_CR2
  doi: 10.1016/S0378-8741(98)00026-9
– ident: 965_CR24
  doi: 10.1007/s10068-019-00649-x
– ident: 965_CR21
  doi: 10.1186/1471-2407-10-392
– ident: 965_CR12
  doi: 10.3945/jn.108.100495
– ident: 965_CR26
  doi: 10.1080/07315724.2009.10719756
– ident: 965_CR15
– ident: 965_CR10
  doi: 10.1097/01.MIB.0000195385.19268.68
– ident: 965_CR16
  doi: 10.4162/nrp.2015.9.1.3
– ident: 965_CR17
  doi: 10.3839/jabc.2017.050
– ident: 965_CR11
  doi: 10.7759/cureus.1004
– ident: 965_CR29
  doi: 10.1054/plef.2002.0441
– ident: 965_CR5
  doi: 10.1007/s10068-019-00616-6
– ident: 965_CR23
  doi: 10.1016/0167-5699(96)80606-2
– ident: 965_CR9
  doi: 10.1016/j.jnutbio.2015.11.015
– ident: 965_CR27
  doi: 10.1007/s003840050178
– ident: 965_CR25
  doi: 10.1046/j.1365-2249.1998.00728.x
– ident: 965_CR1
  doi: 10.2337/dc07-1711
– ident: 965_CR28
  doi: 10.1089/jmf.2005.8.149
– ident: 965_CR4
  doi: 10.1136/gut.2004.043372
– ident: 965_CR19
  doi: 10.1186/1471-2407-10-210
– ident: 965_CR3
  doi: 10.1590/S0365-05962012000500001
– ident: 965_CR7
  doi: 10.1089/jmf.2005.8.125
– ident: 965_CR6
SSID ssj0061274
Score 2.2401106
Snippet This study evaluated the anti-inflammatory effect of ginger-cinnamon mixture using an animal model of dextran sulfate sodium (DSS)-induced intestinal...
This study evaluated the anti-inflammatoryeffect of ginger-cinnamon mixture using an animal modelof dextran sulfate sodium (DSS)-induced...
SourceID nrf
unpaywall
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1249
SubjectTerms Animal models
anti-inflammatory activity
biotechnology
Body weight
Chemistry
Chemistry and Materials Science
cinnamon
Dextran
Dextran sulfate
Dextrans
Distilled water
Drinking water
Food Science
Ginger
histopathology
Inflammation
Interleukin 6
Intestine
intestines
mRNA
myeloperoxidase
necrosis
neoplasms
Nutrition
Peroxidase
Research Article
Tumor necrosis factor-α
식품과학
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7augPswG9EYKCAuDF3Sew4zrFCTAOJCiEqjZPlOPaI2rpVabXBX89zfm3doWKnHPwi2XnfS74Xf34P4L2xOWOYJpNUGEFYbClRicK4yqllIucF0_7s8NcxP5uwL-fp-R7E3VmYWrSvi2roZvOhq37V2srlXJ90OrETgQRAZNk-HPAU6fcADibjb6OfPrFCKoFsselCF-UJ4cgO2oMy7XG5iAviRQmeuack3voY7buV3eKZt1WS_VbpIdzbuKX6c6lmsxtfo9OH8L1bRyNCmQ4362Ko_94q8XinhT6CBy03DUfN0GPYM-4JHN6oWPgUxiNXzdGmbqATLmzoy03gW8Lfhz6qCAIWMTav9-7DRizizS6av4e6cs63NwprJbu5egaT008_Pp6RtiUD0ZjHrUkW2aKMDFcYt1maqNgI3-hIRabMKWcqSROTWV5ECAyjmDBMlUJxyo2xXOmIPoeBWzjzAkLBdWGFppSWjKmYqgJhY-OSRyZjeaEDiDvfSN3WK_dtM2byutKy96dEf8ranzIO4EN_z7Kp1rHT-h26XE51JX2RbX-9WMjpSmIq8VnmvjtXQgM46hAh2_D-LX3rP8wj0yQK4G0_jIHpd1uUM4tNbZMjCJFj7bDBJ4MopjnOJdtCWz99P7PtEQRLXQa8xUcAxx0urye4a9HHPXb_4xm9vJv5K7if1PHlRXhHMFivNuY1srZ18aaN039uZTxD
  priority: 102
  providerName: Unpaywall
Title Animal model of intestinal anti-inflammatory effect of ginger-cinnamon complex
URI https://link.springer.com/article/10.1007/s10068-021-00965-1
https://www.proquest.com/docview/2570148520
https://www.proquest.com/docview/2579092008
https://www.proquest.com/docview/2636659391
https://pubmed.ncbi.nlm.nih.gov/PMC8423877
https://www.ncbi.nlm.nih.gov/pmc/articles/8423877
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002753861
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Food Science and Biotechnology, 2021, 30(9), , pp.1249-1256
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2092-6456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: AFBBN
  dateStart: 20100201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2092-6456
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2092-6456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2092-6456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061274
  issn: 1226-7708
  databaseCode: U2A
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7B9jD2gGCACIwqIN5YJCd2HPsxmjYGiIoHKm1PlpPYW7TOnbpWwL_n7CZZi1AFT5GSi-X4u4vv7PN3AO-NlYxhmJzkwoiEpZYmOtNoV5JaJiSvWO3PDn8d87MJ-3yen3eHwu76bPd-SzL8qdcOuxEuEp9S4P3uPMGYZzf3dF6oxZOs7P-_OGUH7uUUHQv0HYnojsr8vY2N6eihm9sNT_PPPMlhs3Qf9pbuVv_6oafTtfno9Ak87hzJuFwh_xQeGHcAe8d9_bYD2F-jGnwG49K1NygfKt_EMxt7ngg0b98GDm6boKahctyETfd4leXhxS5Xy35165yvSxSHFHTz8zlMTk--H58lXS2FpMYAbJEUxFYNMVyjwRV5plMjfIUiTUwjKWc6yzNTWF4RRNRoJgzTjdCccmMs1zWhL2DHzZx5CbHgdWVFTSltGNMp1RXibdOGE1MwWdURpP2QqrojGvf1LqbqniLZw6AQBhVgUGkEH4Z3blc0G1ul3yFS6rpulWfH9tfLmbqeK4wBPinpy2plNILDHkjV2eWd8jX7MADMMxLB2-ExAuO3SbQzs2WQkUT6vJAtMjgyPJdUYl-KDSUZuu97tvnEtVeBv1ugCyuKIoKjXp3uO7jto48GlfuHMXr1f62_hkdZMAufPXcIO4v50rxBd2tRjWC3_Hjx5WQUVsJGwdbw3mT8rbz4DUZcJCM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELZgPJQ9IDZABMYWEG8skhM7jv1YTUwdbH1apb1ZTmKPaJ07da2Af8-dm2Qtmip4yoMvluPvzr6Lz98R8tk6xTmEyUkurUx46lhiMgN2pZjjUomSV3h3-GIsRhP-7Sq_ai-F3XfZ7t2RZFip1y67USETTClAvztPIOZ5hgRWyJg_yYbd-gtbduBeTsGxAN-RyvaqzON9bGxHT_3cbXiaf-dJ9oelu2Sw9Hfm908zna7tR6cvyYvWkYyHK-T3yBPr98ngpKvftk9216gGX5Hx0De3IB8q38QzFyNPBJg39gGT2ySgaaAct-HQPV5leaDY9eq3X9V4j3WJ4pCCbn-9JpPTr5cno6StpZBUEIAtkoK6sqZWGDC4Is9MaiVWKDLU1ooJbrI8s4UTJQVEreHSclNLI5iw1glTUfaG7PiZt29JLEVVOlkxxmrOTcpMCXi7tBbUFlyVVUTSbkp11RKNY72LqX6gSEYYNMCgAww6jciX_p27Fc3GVulPgJS-qRqN7Nj4vJ7pm7mGGOBMKyyrlbGIHHRA6tYu7zXW7IMAMM9oRD72zQAMHpMYb2fLIKOowryQLTIwMyJXTMFYig0l6YePI9ts8c2PwN8twYWVRRGR406dHga47aOPe5X7hzl693-9H5HB6PLiXJ-fjb-_J8-zYCKYSXdAdhbzpf0ArteiPAyW9gcBeiK7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIw9IBggMgYExBuL5sSOYz9Wg2rjo-KBSnuznMTeonVuVVoN_nvunKRrEargKQ-5WM59xHe5u98R8s46xTmEyUkurUx46lhiMgN2pZjjUomSV9g7_HUkTsf803l-vtbFH6rd-5Rk29OAKE1-cTyr3fFa4xsVMsHyAvTB8wTin3scgRJAo8fZoP8Ww_EdcJhTcDLAj6Sya5v5-xobR9NdP3cbXuefNZOrxOke2V36mfl1YyaTtbNp-Ig87JzKeNBqwWNyx_p9snvSz3LbJ3trsINPyGjgm2ugD1Nw4qmLETMCTB3XAEY3CWgdKMp1SMDHbcUHkl20vwCrxnucURSHcnT78ykZDz9-PzlNurkKSQXB2CIpqCtraoUB4yvyzKRW4rQiQ22tmOAmyzNbOFFSkK41XFpuamkEE9Y6YSrKnpEdP_X2OYmlqEonK8ZYzblJmSlB9i6tBbUFV2UVkbRnqa460HGcfTHRt3DJKAYNYtBBDDqNyPvVM7MWcmMr9VuQlL6qGo1I2Xi9mOqruYZ44EwrHLGVsYgc9oLUnY3-0Di_D4LBPKMRebO6DYLBlInxdroMNIoqrBHZQgOcEbliCvZSbCjJavu4s807vrkMWN4S3FlZFBE56tXpdoPbXvpopXL_wKOD_1v9Nbn_7cNQfzkbfX5BHmTBQrCo7pDsLOZL-xK8sEX5Khjab2coJvc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7augPswG9EYKCAuDF3Sew4zrFCTAOJCiEqjZPlOPaI2rpVabXBX89zfm3doWKnHPwi2XnfS74Xf34P4L2xOWOYJpNUGEFYbClRicK4yqllIucF0_7s8NcxP5uwL-fp-R7E3VmYWrSvi2roZvOhq37V2srlXJ90OrETgQRAZNk-HPAU6fcADibjb6OfPrFCKoFsselCF-UJ4cgO2oMy7XG5iAviRQmeuack3voY7buV3eKZt1WS_VbpIdzbuKX6c6lmsxtfo9OH8L1bRyNCmQ4362Ko_94q8XinhT6CBy03DUfN0GPYM-4JHN6oWPgUxiNXzdGmbqATLmzoy03gW8Lfhz6qCAIWMTav9-7DRizizS6av4e6cs63NwprJbu5egaT008_Pp6RtiUD0ZjHrUkW2aKMDFcYt1maqNgI3-hIRabMKWcqSROTWV5ECAyjmDBMlUJxyo2xXOmIPoeBWzjzAkLBdWGFppSWjKmYqgJhY-OSRyZjeaEDiDvfSN3WK_dtM2byutKy96dEf8ranzIO4EN_z7Kp1rHT-h26XE51JX2RbX-9WMjpSmIq8VnmvjtXQgM46hAh2_D-LX3rP8wj0yQK4G0_jIHpd1uUM4tNbZMjCJFj7bDBJ4MopjnOJdtCWz99P7PtEQRLXQa8xUcAxx0urye4a9HHPXb_4xm9vJv5K7if1PHlRXhHMFivNuY1srZ18aaN039uZTxD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Animal+Model+of+Intestinal+Anti-inflammatory+Effect+of+Ginger-Cinnamon+Complex&rft.jtitle=Food+science+and+biotechnology&rft.au=%EC%9E%84%EC%A7%84%EC%95%84&rft.au=%EA%B9%80%EB%AF%BC%EC%84%9C&rft.au=%EA%B6%8C%EC%98%A4%EB%9E%80&rft.au=%EC%8B%A0%EC%9E%AC%ED%98%B8&rft.date=2021-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%8B%9D%ED%92%88%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1226-7708&rft.eissn=2092-6456&rft.spage=1249&rft.epage=1256&rft_id=info:doi/10.1007%2Fs10068-021-00965-1&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9860223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7708&client=summon