Spin-dependent electron transport of a waveguide with Rashba spin-orbit coupling in an electromagnetic field
We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin-orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the...
Saved in:
Published in | Chinese physics B Vol. 18; no. 12; pp. 5462 - 5467 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/18/12/055 |
Cover
Summary: | We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin-orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can he understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide. |
---|---|
Bibliography: | TN929.11 O572 waveguide, spin-orbit coupling, spin polarization 11-5639/O4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/18/12/055 |