Retinoic Acid-Induced Gene G(RIG-G) as a Novel Monitoring Biomarker in Leukemia and Its Clinical Applications
Retinoic acid inducible gene G (RIG-G) is an inducible gene produced during the treatment of acute promyelocytic leukemia with all-trans retinoic acid (ATRA). However, it is unclear the expression level of RIG-G gene in the peripheral blood of healthy subjects and patients with acute promyelocytic l...
Saved in:
Published in | Genes Vol. 12; no. 7; p. 1035 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4425 2073-4425 |
DOI | 10.3390/genes12071035 |
Cover
Summary: | Retinoic acid inducible gene G (RIG-G) is an inducible gene produced during the treatment of acute promyelocytic leukemia with all-trans retinoic acid (ATRA). However, it is unclear the expression level of RIG-G gene in the peripheral blood of healthy subjects and patients with acute promyelocytic leukemia (APL or AML-M3). In the present study, we established the TaqMan-MGB fluorescent probe qPCR (real-time polymerase chain reaction) method for the first time to detect the expression of RIG-G gene in APL. Twenty APL patients were selected, and their RIG-G expression levels were quantified to assess the correlation between the expression of peripheral blood and bone marrow samples. U test was used to analyze the expression level of RIG-G in the peripheral blood of 40 normal specimens and 20 APL patients to observe the prognostic monitoring effect of RIG-G gene in the ATRA treatment process. ROC (receiver operating characteristic curve) was used to analyze and test the diagnostic efficiency of RIG-G gene for APL patients. There is a strong positive correlation between the expression of RIG-G in peripheral blood and bone marrow of APL patients. The expression level of RIG-G in peripheral blood of APL patients is significantly lower than that in healthy controls (p < 0.001). The changes in the expression level of RIG-G in peripheral blood changed indicates the remission and recurrence of APL patients after ATRA treatment, and the ROC curve shows that it has a better diagnostic power for APL. In summary, the TaqMan-MGB real-time PCR method we have established has successfully run. The detection of RIG-G gene expression in peripheral blood can effectively monitor the disease changes of APL patients and avoid harmful bone marrow puncture injury. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ISSN: | 2073-4425 2073-4425 |
DOI: | 10.3390/genes12071035 |