AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM
(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects....
Saved in:
Published in | IEEE sensors journal Vol. 22; no. 18; pp. 17431 - 17438 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
15.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2021.3062442 |
Cover
Abstract | (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases. |
---|---|
AbstractList | (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases. (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases. |
Author | Fernandes, Steven Lawrence Zhu, Ziquan Zhang, Yu-Dong Wang, Shui-Hua |
AuthorAffiliation | Science in Civil Engineering University of Florida 3463 Gainesville FL 32608 USA School of Mathematics and Actuarial Science University of Leicester 4488 Leicester LE1 7RH U.K Department of Computer Science Design & Journalism Creighton University 6216 Omaha NE 68178 USA School of Informatics University of Leicester 4488 Leicester LE1 7RH U.K |
AuthorAffiliation_xml | – name: Science in Civil Engineering University of Florida 3463 Gainesville FL 32608 USA – name: School of Mathematics and Actuarial Science University of Leicester 4488 Leicester LE1 7RH U.K – name: Department of Computer Science Design & Journalism Creighton University 6216 Omaha NE 68178 USA – name: School of Informatics University of Leicester 4488 Leicester LE1 7RH U.K |
Author_xml | – sequence: 1 givenname: Shui-Hua orcidid: 0000-0003-2238-6808 surname: Wang fullname: Wang, Shui-Hua email: shuihuawang@ieee.org organization: School of Mathematics and Actuarial Science, University of Leicester, Leicester, U.K – sequence: 2 givenname: Steven Lawrence surname: Fernandes fullname: Fernandes, Steven Lawrence email: stevenfernandes@creighton.edu organization: Department of Computer Science, Design & Journalism, Creighton University, Omaha, NE, USA – sequence: 3 givenname: Ziquan surname: Zhu fullname: Zhu, Ziquan email: zhu.ziquan@ufl.edu organization: Science in Civil Engineering, University of Florida, Gainesville, FL, USA – sequence: 4 givenname: Yu-Dong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yu-Dong email: yudongzhang@ieee.org organization: School of Informatics, University of Leicester, Leicester, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36346097$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEUhS1EVSDtA1RIaKRuupnUHv-Nu6gUBkhBNCygUXeWx7kDppMxtSet8vb1KAEVFqxs6X7n6Nx7DtBu5ztA6APBY0Kw-nxxfTobF7ggY4pFwVixg_YJ52VOJCt3hz_FOaPy5x46iPEeY6Ikl2_RHhWUCazkPjqbzGfVl2zS99D1znf5sYmwyObTaX7dr1vIZtD_9eFX1viQVVfz85OcqOzEmdvORxezep1Vx5Pv79CbxrQR3m_fEfpxdnpTfcsvr6bn1eQyt4zJPgcwGC9Ky1QjiTWNalhpatmkOGCENdYIpQhmwEsqSMGBp6mlZVFLqClmdIS-bnwfVvUSFjaFDqbVD8EtTVhrb5x-Puncnb71f7TiguG09gh92hoE_3sFsddLFy20renAr6IuJGVEcIxlQj--QO_9KnRpvUQRVipBSpyoo_8TPUV5PHEC5AawwccYoNHW9Wa4dQroWk2wHsrUQ5l6KFNvy0xK8kL5aP6a5nCjcQDwxKuURhWc_gOo_adG |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1007_s10844_022_00741_5 crossref_primary_10_1016_j_aichem_2023_100031 crossref_primary_10_3390_app13148465 crossref_primary_10_1002_ima_22972 crossref_primary_10_1007_s11227_022_04469_5 crossref_primary_10_32604_cmes_2022_018496 crossref_primary_10_1016_j_cropro_2024_106716 crossref_primary_10_3389_fpubh_2023_1109236 crossref_primary_10_1109_JSEN_2022_3164915 crossref_primary_10_1007_s00138_023_01375_5 crossref_primary_10_1016_j_bspc_2021_103216 crossref_primary_10_1016_j_neucom_2025_129878 crossref_primary_10_1016_j_bspc_2023_104828 crossref_primary_10_1007_s00521_023_08910_5 crossref_primary_10_1007_s11042_024_19076_0 crossref_primary_10_3390_rs14040923 crossref_primary_10_1109_ACCESS_2023_3280559 crossref_primary_10_1109_JSEN_2024_3416436 crossref_primary_10_3390_s24196237 crossref_primary_10_3390_app12125784 crossref_primary_10_3390_s23041801 crossref_primary_10_1002_eng2_12897 crossref_primary_10_1109_ACCESS_2024_3409077 crossref_primary_10_3390_rs15041042 crossref_primary_10_1002_ima_22965 crossref_primary_10_1080_21681163_2023_2258998 crossref_primary_10_1111_exsy_13185 crossref_primary_10_1016_j_ijcce_2023_03_005 crossref_primary_10_1117_1_JMI_11_1_014008 crossref_primary_10_3390_electronics12112437 crossref_primary_10_3390_agriculture13010011 crossref_primary_10_1007_s44230_023_00049_9 crossref_primary_10_1109_ACCESS_2021_3126782 crossref_primary_10_1007_s12559_022_10052_0 crossref_primary_10_1016_j_displa_2024_102727 crossref_primary_10_1080_21681163_2023_2238846 crossref_primary_10_1177_00405175241237479 crossref_primary_10_1080_21681163_2023_2219765 crossref_primary_10_1177_10775463241276024 crossref_primary_10_3390_agriculture15030262 crossref_primary_10_3389_fmed_2021_755309 crossref_primary_10_1016_j_jmapro_2023_06_024 crossref_primary_10_1007_s11063_022_10978_4 crossref_primary_10_1080_21681163_2023_2219760 crossref_primary_10_1080_15368378_2024_2301952 crossref_primary_10_3390_app13052941 crossref_primary_10_1016_j_ecoinf_2022_101931 crossref_primary_10_1002_ima_23207 crossref_primary_10_1088_1361_665X_ad06e0 crossref_primary_10_3390_jmse10070840 crossref_primary_10_1016_j_jksuci_2023_101766 crossref_primary_10_1186_s13636_023_00283_w crossref_primary_10_3390_jimaging9010001 crossref_primary_10_54097_hset_v14i_1586 crossref_primary_10_1109_ACCESS_2023_3343157 crossref_primary_10_1155_2021_3257035 crossref_primary_10_1016_j_identj_2024_08_002 crossref_primary_10_1088_1402_4896_ad671d crossref_primary_10_1109_ACCESS_2024_3419587 crossref_primary_10_3390_diagnostics13071329 crossref_primary_10_1016_j_ibneur_2023_08_002 crossref_primary_10_1016_j_eswa_2024_125443 crossref_primary_10_3390_f14071499 crossref_primary_10_1109_TEM_2021_3104751 crossref_primary_10_1016_j_physa_2024_129600 crossref_primary_10_1177_14759217241261155 crossref_primary_10_1109_JSEN_2024_3485216 crossref_primary_10_1016_j_aiig_2022_12_001 crossref_primary_10_1039_D3AN00615H crossref_primary_10_1007_s13042_023_01871_0 crossref_primary_10_1002_ima_22903 crossref_primary_10_1007_s13369_021_05879_y crossref_primary_10_1016_j_eswa_2023_122879 crossref_primary_10_3390_app13095589 crossref_primary_10_1155_2021_6890024 crossref_primary_10_1016_j_bspc_2022_103729 crossref_primary_10_1007_s11431_022_2368_y crossref_primary_10_1109_ACCESS_2024_3368801 |
Cites_doi | 10.1093/cercor/bhaa155 10.1016/j.compbiomed.2020.103805 10.1109/TPAMI.2019.2913372 10.1007/s11263-019-01228-7 10.1109/CVPR.2015.7298594 10.2174/1871527315666161019153259 10.1109/TMI.2020.2995965 10.1109/TVT.2019.2936792 10.1016/j.inffus.2020.11.005 10.1016/j.hjdsi.2020.100449 10.3233/FI-2017-1492 10.1145/3359983 10.1049/iet-ipr.2018.6656 10.1007/s00330-020-07044-9 10.1109/JSEN.2020.3025855 10.33263/briac106.72347242 10.1109/ITC-CSCC.2019.8793329 10.1109/TITS.2020.2990214 10.1016/j.jviromet.2020.113888 10.1016/j.inffus.2020.10.004 10.2214/AJR.19.22372 10.1007/s00138-020-01119-9 10.1109/TNSE.2020.2990963 10.1007/978-3-030-01234-2_1 10.2196/19569 10.1109/ICASID.2019.8925267 10.7759/cureus.9448 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 2021 IEEE |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: 2021 IEEE |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 7U5 8FD L7M 7X8 5PM |
DOI | 10.1109/JSEN.2021.3062442 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 17438 |
ExternalDocumentID | PMC9564036 36346097 10_1109_JSEN_2021_3062442 9363925 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Royal Society International Exchanges Cost Share Award, U.K. grantid: RP202G0230 funderid: 10.13039/501100000288 – fundername: Fundamental Research Funds for the Central Universities grantid: CDLS-2020-03 funderid: 10.13039/501100012226 – fundername: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education – fundername: Medical Research Council Confidence in Concept Award, U.K. grantid: MC_PC_17171 funderid: 10.13039/501100000265 – fundername: Hope Foundation for Cancer Research, U.K. grantid: RM60G0680 funderid: 10.13039/501100000289 – fundername: Medical Research Council grantid: MC_PC_17171 – fundername: ; – fundername: ; grantid: RP202G0230 – fundername: ; grantid: CDLS-2020-03 – fundername: ; grantid: RM60G0680 – fundername: ; grantid: MC_PC_17171 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 5VS AETIX AGSQL AIBXA EJD H~9 NPM RIG ZY4 7SP 7U5 8FD L7M 7X8 5PM |
ID | FETCH-LOGICAL-c447t-eea00d8c49f71caf9f48ab7f634ea6caca699104e5836125e5ab7c382b7eb3043 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Tue Sep 30 17:19:01 EDT 2025 Sun Sep 28 06:53:22 EDT 2025 Mon Jun 30 10:10:02 EDT 2025 Mon Jul 21 06:08:07 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Wed Oct 01 04:14:50 EDT 2025 Wed Aug 27 02:18:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | covid-19 diagnosis convolutional block attention module convolutional neural network Attention VGG |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 This article is free to access and download, along with rights for full text and data mining, re-use and analysis. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-eea00d8c49f71caf9f48ab7f634ea6caca699104e5836125e5ab7c382b7eb3043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2238-6808 0000-0002-4870-1493 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9564036 |
PMID | 36346097 |
PQID | 2714896180 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_36346097 ieee_primary_9363925 crossref_citationtrail_10_1109_JSEN_2021_3062442 crossref_primary_10_1109_JSEN_2021_3062442 proquest_miscellaneous_2734165007 proquest_journals_2714896180 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9564036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationTitleAlternate | IEEE Sens J |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 Larochelle (ref23) ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref22 doi: 10.1093/cercor/bhaa155 – ident: ref15 doi: 10.1016/j.compbiomed.2020.103805 – ident: ref24 doi: 10.1109/TPAMI.2019.2913372 – ident: ref25 doi: 10.1007/s11263-019-01228-7 – ident: ref7 doi: 10.1109/CVPR.2015.7298594 – ident: ref5 doi: 10.2174/1871527315666161019153259 – ident: ref14 doi: 10.1109/TMI.2020.2995965 – ident: ref26 doi: 10.1109/TVT.2019.2936792 – ident: ref17 doi: 10.1016/j.inffus.2020.11.005 – ident: ref3 doi: 10.1016/j.hjdsi.2020.100449 – ident: ref6 doi: 10.3233/FI-2017-1492 – ident: ref19 doi: 10.1145/3359983 – start-page: 1243 volume-title: Proc. Neural Inf. Process. Syst. (NeurIPS) ident: ref23 article-title: Learning to combine foveal glimpses with a third-order Boltzmann machine – ident: ref18 doi: 10.1049/iet-ipr.2018.6656 – ident: ref12 doi: 10.1007/s00330-020-07044-9 – ident: ref10 doi: 10.1109/JSEN.2020.3025855 – ident: ref1 doi: 10.33263/briac106.72347242 – ident: ref20 doi: 10.1109/ITC-CSCC.2019.8793329 – ident: ref27 doi: 10.1109/TITS.2020.2990214 – ident: ref2 doi: 10.1016/j.jviromet.2020.113888 – ident: ref16 doi: 10.1016/j.inffus.2020.10.004 – ident: ref4 doi: 10.2214/AJR.19.22372 – ident: ref9 doi: 10.1007/s00138-020-01119-9 – ident: ref28 doi: 10.1109/TNSE.2020.2990963 – ident: ref21 doi: 10.1007/978-3-030-01234-2_1 – ident: ref11 doi: 10.2196/19569 – ident: ref8 doi: 10.1109/ICASID.2019.8925267 – ident: ref13 doi: 10.7759/cureus.9448 |
SSID | ssj0019757 |
Score | 2.6272676 |
Snippet | (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17431 |
SubjectTerms | Artificial intelligence Attention Bacterial diseases Computer networks convolutional block attention module convolutional neural network COVID-19 diagnosis Labeling Lung Modules Testing Three-dimensional displays Ultrasonic imaging VGG |
Title | AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM |
URI | https://ieeexplore.ieee.org/document/9363925 https://www.ncbi.nlm.nih.gov/pubmed/36346097 https://www.proquest.com/docview/2714896180 https://www.proquest.com/docview/2734165007 https://pubmed.ncbi.nlm.nih.gov/PMC9564036 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbaXrYd9mj38NYNGrDTMKWKrYe1W5o27QokO3QNcjNkmUGLFU7ROofs14-yHaMpimE3A6QFWSTBjyZFAnxRORpvYs2tk5ZLncdkUoXkhJRlLrzVRd1IezzRpxfybKZmW_CtuwuDiHXxGfbCY53LLxZ-GX6VHdiE_GmstmHbGNvc1eoyBtbUXT3JgAWXiZm1Gcy-sAdn58cTigTjfo_wMbmzeMMH1UNVHsOXD8sk7_md0QsYr3fclJv87i2rvOf_PGjm-L-f9BKetwCUDRqNeQVbWO7Cs3ttCXfhSTsZ_XK1B6PBdDL8zgZV1dRF8kNyewWbnpzw82p1jWzS1JEzAr9s-HP644j3LTtqCviu7li-YsPDwfg1XIyOfw1PeTt7gXspTcURnRBF6qWdm753czuXqcvNXCcSnfbOO03IUkhUaRJAEiqi-iSNc0PhuZDJG9gpFyW-A2ZTMnLplMJUkytEa0gHPAlCq0IqV0Qg1tLIfNuYPMzHuM7qAEXYLAgwCwLMWgFG8LV75abpyvEv5r1w7h1je-QR7K9FnrV2e5fFhsLDMARHRPC5I5PFhTSKK3GxDDzk-QnYChPB20ZDurVpaamFJYrZ0J2OIXTz3qSUV5d1V28KVCXBifeP7_YDPI3DxYswvELtw051u8SPBIeq_FNtB38BFrYC5Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8xeGB7GAzGlsE2T9rTNBc38Ue8t1IohdHsAaj6FjmOK9BQOo30ofvrd07SiCI07S3SXSzHd6f7Xe58B_BZZE5ZFUqqDdeUyyxEk8o5RaTMM2a1zKtG2qNEDq_5-URM1uBrexfGOVcVn7mOf6xy-fnMzv2vskMdoT8NxTPYEBhVqPq2Vpsz0Krq64kmzCiP1KTJYXaZPjy_PEkwFgy7HUTI6NDCFS9UjVV5CmE-LpR84HkGWzBa7rkuOPnZmZdZx_551M7xfz9qG142EJT0ap15BWuu2IEXDxoT7sBmMxv9ZrELg9446X8jvbKsKyPpETq-nIxPT-llubhzJKkryQnCX9L_MT47pl1NjusSvtt7ki1I_6g3eg3Xg5Or_pA20xeo5VyV1DnDWB5brqeqa81UT3lsMjWVEXdGWmONRGzJuBNx5GGSE0i1URxmCgN0xqM9WC9mhXsLRMdo5twI4WKJztBphVpgURBS5FyYPAC2lEZqm9bkfkLGXVqFKEynXoCpF2DaCDCAL-0rv-q-HP9i3vXn3jI2Rx7AwVLkaWO592moMED0Y3BYAJ9aMtqcT6SYws3mngd9P0JbpgJ4U2tIuzYuzSXTSFErutMy-H7eq5Ti9qbq642hKkdA8e7p3X6EzeHV6CK9OEu-78Pz0F_D8KMsxAGsl7_n7j2CozL7UNnEX9JtBjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AVNC%3A+Attention-Based+VGG-Style+Network+for+COVID-19+Diagnosis+by+CBAM&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Shui-Hua&rft.au=Fernandes%2C+Steven+Lawrence&rft.au=Zhu%2C+Ziquan&rft.au=Zhang%2C+Yu-Dong&rft.date=2022-09-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=22&rft.issue=18&rft.spage=17431&rft.epage=17438&rft_id=info:doi/10.1109%2FJSEN.2021.3062442&rft.externalDocID=9363925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |