AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM

(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects....

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 18; pp. 17431 - 17438
Main Authors Wang, Shui-Hua, Fernandes, Steven Lawrence, Zhu, Ziquan, Zhang, Yu-Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 15.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3062442

Cover

Abstract (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.
AbstractList (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.
(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.
Author Fernandes, Steven Lawrence
Zhu, Ziquan
Zhang, Yu-Dong
Wang, Shui-Hua
AuthorAffiliation Science in Civil Engineering University of Florida 3463 Gainesville FL 32608 USA
School of Mathematics and Actuarial Science University of Leicester 4488 Leicester LE1 7RH U.K
Department of Computer Science Design & Journalism Creighton University 6216 Omaha NE 68178 USA
School of Informatics University of Leicester 4488 Leicester LE1 7RH U.K
AuthorAffiliation_xml – name: Science in Civil Engineering University of Florida 3463 Gainesville FL 32608 USA
– name: School of Mathematics and Actuarial Science University of Leicester 4488 Leicester LE1 7RH U.K
– name: Department of Computer Science Design & Journalism Creighton University 6216 Omaha NE 68178 USA
– name: School of Informatics University of Leicester 4488 Leicester LE1 7RH U.K
Author_xml – sequence: 1
  givenname: Shui-Hua
  orcidid: 0000-0003-2238-6808
  surname: Wang
  fullname: Wang, Shui-Hua
  email: shuihuawang@ieee.org
  organization: School of Mathematics and Actuarial Science, University of Leicester, Leicester, U.K
– sequence: 2
  givenname: Steven Lawrence
  surname: Fernandes
  fullname: Fernandes, Steven Lawrence
  email: stevenfernandes@creighton.edu
  organization: Department of Computer Science, Design & Journalism, Creighton University, Omaha, NE, USA
– sequence: 3
  givenname: Ziquan
  surname: Zhu
  fullname: Zhu, Ziquan
  email: zhu.ziquan@ufl.edu
  organization: Science in Civil Engineering, University of Florida, Gainesville, FL, USA
– sequence: 4
  givenname: Yu-Dong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yu-Dong
  email: yudongzhang@ieee.org
  organization: School of Informatics, University of Leicester, Leicester, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36346097$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUhS1EVSDtA1RIaKRuupnUHv-Nu6gUBkhBNCygUXeWx7kDppMxtSet8vb1KAEVFqxs6X7n6Nx7DtBu5ztA6APBY0Kw-nxxfTobF7ggY4pFwVixg_YJ52VOJCt3hz_FOaPy5x46iPEeY6Ikl2_RHhWUCazkPjqbzGfVl2zS99D1znf5sYmwyObTaX7dr1vIZtD_9eFX1viQVVfz85OcqOzEmdvORxezep1Vx5Pv79CbxrQR3m_fEfpxdnpTfcsvr6bn1eQyt4zJPgcwGC9Ky1QjiTWNalhpatmkOGCENdYIpQhmwEsqSMGBp6mlZVFLqClmdIS-bnwfVvUSFjaFDqbVD8EtTVhrb5x-Puncnb71f7TiguG09gh92hoE_3sFsddLFy20renAr6IuJGVEcIxlQj--QO_9KnRpvUQRVipBSpyoo_8TPUV5PHEC5AawwccYoNHW9Wa4dQroWk2wHsrUQ5l6KFNvy0xK8kL5aP6a5nCjcQDwxKuURhWc_gOo_adG
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s10844_022_00741_5
crossref_primary_10_1016_j_aichem_2023_100031
crossref_primary_10_3390_app13148465
crossref_primary_10_1002_ima_22972
crossref_primary_10_1007_s11227_022_04469_5
crossref_primary_10_32604_cmes_2022_018496
crossref_primary_10_1016_j_cropro_2024_106716
crossref_primary_10_3389_fpubh_2023_1109236
crossref_primary_10_1109_JSEN_2022_3164915
crossref_primary_10_1007_s00138_023_01375_5
crossref_primary_10_1016_j_bspc_2021_103216
crossref_primary_10_1016_j_neucom_2025_129878
crossref_primary_10_1016_j_bspc_2023_104828
crossref_primary_10_1007_s00521_023_08910_5
crossref_primary_10_1007_s11042_024_19076_0
crossref_primary_10_3390_rs14040923
crossref_primary_10_1109_ACCESS_2023_3280559
crossref_primary_10_1109_JSEN_2024_3416436
crossref_primary_10_3390_s24196237
crossref_primary_10_3390_app12125784
crossref_primary_10_3390_s23041801
crossref_primary_10_1002_eng2_12897
crossref_primary_10_1109_ACCESS_2024_3409077
crossref_primary_10_3390_rs15041042
crossref_primary_10_1002_ima_22965
crossref_primary_10_1080_21681163_2023_2258998
crossref_primary_10_1111_exsy_13185
crossref_primary_10_1016_j_ijcce_2023_03_005
crossref_primary_10_1117_1_JMI_11_1_014008
crossref_primary_10_3390_electronics12112437
crossref_primary_10_3390_agriculture13010011
crossref_primary_10_1007_s44230_023_00049_9
crossref_primary_10_1109_ACCESS_2021_3126782
crossref_primary_10_1007_s12559_022_10052_0
crossref_primary_10_1016_j_displa_2024_102727
crossref_primary_10_1080_21681163_2023_2238846
crossref_primary_10_1177_00405175241237479
crossref_primary_10_1080_21681163_2023_2219765
crossref_primary_10_1177_10775463241276024
crossref_primary_10_3390_agriculture15030262
crossref_primary_10_3389_fmed_2021_755309
crossref_primary_10_1016_j_jmapro_2023_06_024
crossref_primary_10_1007_s11063_022_10978_4
crossref_primary_10_1080_21681163_2023_2219760
crossref_primary_10_1080_15368378_2024_2301952
crossref_primary_10_3390_app13052941
crossref_primary_10_1016_j_ecoinf_2022_101931
crossref_primary_10_1002_ima_23207
crossref_primary_10_1088_1361_665X_ad06e0
crossref_primary_10_3390_jmse10070840
crossref_primary_10_1016_j_jksuci_2023_101766
crossref_primary_10_1186_s13636_023_00283_w
crossref_primary_10_3390_jimaging9010001
crossref_primary_10_54097_hset_v14i_1586
crossref_primary_10_1109_ACCESS_2023_3343157
crossref_primary_10_1155_2021_3257035
crossref_primary_10_1016_j_identj_2024_08_002
crossref_primary_10_1088_1402_4896_ad671d
crossref_primary_10_1109_ACCESS_2024_3419587
crossref_primary_10_3390_diagnostics13071329
crossref_primary_10_1016_j_ibneur_2023_08_002
crossref_primary_10_1016_j_eswa_2024_125443
crossref_primary_10_3390_f14071499
crossref_primary_10_1109_TEM_2021_3104751
crossref_primary_10_1016_j_physa_2024_129600
crossref_primary_10_1177_14759217241261155
crossref_primary_10_1109_JSEN_2024_3485216
crossref_primary_10_1016_j_aiig_2022_12_001
crossref_primary_10_1039_D3AN00615H
crossref_primary_10_1007_s13042_023_01871_0
crossref_primary_10_1002_ima_22903
crossref_primary_10_1007_s13369_021_05879_y
crossref_primary_10_1016_j_eswa_2023_122879
crossref_primary_10_3390_app13095589
crossref_primary_10_1155_2021_6890024
crossref_primary_10_1016_j_bspc_2022_103729
crossref_primary_10_1007_s11431_022_2368_y
crossref_primary_10_1109_ACCESS_2024_3368801
Cites_doi 10.1093/cercor/bhaa155
10.1016/j.compbiomed.2020.103805
10.1109/TPAMI.2019.2913372
10.1007/s11263-019-01228-7
10.1109/CVPR.2015.7298594
10.2174/1871527315666161019153259
10.1109/TMI.2020.2995965
10.1109/TVT.2019.2936792
10.1016/j.inffus.2020.11.005
10.1016/j.hjdsi.2020.100449
10.3233/FI-2017-1492
10.1145/3359983
10.1049/iet-ipr.2018.6656
10.1007/s00330-020-07044-9
10.1109/JSEN.2020.3025855
10.33263/briac106.72347242
10.1109/ITC-CSCC.2019.8793329
10.1109/TITS.2020.2990214
10.1016/j.jviromet.2020.113888
10.1016/j.inffus.2020.10.004
10.2214/AJR.19.22372
10.1007/s00138-020-01119-9
10.1109/TNSE.2020.2990963
10.1007/978-3-030-01234-2_1
10.2196/19569
10.1109/ICASID.2019.8925267
10.7759/cureus.9448
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
2021 IEEE
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: 2021 IEEE
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
5PM
DOI 10.1109/JSEN.2021.3062442
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 17438
ExternalDocumentID PMC9564036
36346097
10_1109_JSEN_2021_3062442
9363925
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Royal Society International Exchanges Cost Share Award, U.K.
  grantid: RP202G0230
  funderid: 10.13039/501100000288
– fundername: Fundamental Research Funds for the Central Universities
  grantid: CDLS-2020-03
  funderid: 10.13039/501100012226
– fundername: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education
– fundername: Medical Research Council Confidence in Concept Award, U.K.
  grantid: MC_PC_17171
  funderid: 10.13039/501100000265
– fundername: Hope Foundation for Cancer Research, U.K.
  grantid: RM60G0680
  funderid: 10.13039/501100000289
– fundername: Medical Research Council
  grantid: MC_PC_17171
– fundername: ;
– fundername: ;
  grantid: RP202G0230
– fundername: ;
  grantid: CDLS-2020-03
– fundername: ;
  grantid: RM60G0680
– fundername: ;
  grantid: MC_PC_17171
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
5VS
AETIX
AGSQL
AIBXA
EJD
H~9
NPM
RIG
ZY4
7SP
7U5
8FD
L7M
7X8
5PM
ID FETCH-LOGICAL-c447t-eea00d8c49f71caf9f48ab7f634ea6caca699104e5836125e5ab7c382b7eb3043
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Tue Sep 30 17:19:01 EDT 2025
Sun Sep 28 06:53:22 EDT 2025
Mon Jun 30 10:10:02 EDT 2025
Mon Jul 21 06:08:07 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Wed Oct 01 04:14:50 EDT 2025
Wed Aug 27 02:18:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords covid-19
diagnosis
convolutional block attention module
convolutional neural network
Attention
VGG
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-eea00d8c49f71caf9f48ab7f634ea6caca699104e5836125e5ab7c382b7eb3043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2238-6808
0000-0002-4870-1493
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9564036
PMID 36346097
PQID 2714896180
PQPubID 75733
PageCount 8
ParticipantIDs pubmed_primary_36346097
ieee_primary_9363925
crossref_citationtrail_10_1109_JSEN_2021_3062442
crossref_primary_10_1109_JSEN_2021_3062442
proquest_miscellaneous_2734165007
proquest_journals_2714896180
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9564036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationTitleAlternate IEEE Sens J
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Larochelle (ref23)
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1093/cercor/bhaa155
– ident: ref15
  doi: 10.1016/j.compbiomed.2020.103805
– ident: ref24
  doi: 10.1109/TPAMI.2019.2913372
– ident: ref25
  doi: 10.1007/s11263-019-01228-7
– ident: ref7
  doi: 10.1109/CVPR.2015.7298594
– ident: ref5
  doi: 10.2174/1871527315666161019153259
– ident: ref14
  doi: 10.1109/TMI.2020.2995965
– ident: ref26
  doi: 10.1109/TVT.2019.2936792
– ident: ref17
  doi: 10.1016/j.inffus.2020.11.005
– ident: ref3
  doi: 10.1016/j.hjdsi.2020.100449
– ident: ref6
  doi: 10.3233/FI-2017-1492
– ident: ref19
  doi: 10.1145/3359983
– start-page: 1243
  volume-title: Proc. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref23
  article-title: Learning to combine foveal glimpses with a third-order Boltzmann machine
– ident: ref18
  doi: 10.1049/iet-ipr.2018.6656
– ident: ref12
  doi: 10.1007/s00330-020-07044-9
– ident: ref10
  doi: 10.1109/JSEN.2020.3025855
– ident: ref1
  doi: 10.33263/briac106.72347242
– ident: ref20
  doi: 10.1109/ITC-CSCC.2019.8793329
– ident: ref27
  doi: 10.1109/TITS.2020.2990214
– ident: ref2
  doi: 10.1016/j.jviromet.2020.113888
– ident: ref16
  doi: 10.1016/j.inffus.2020.10.004
– ident: ref4
  doi: 10.2214/AJR.19.22372
– ident: ref9
  doi: 10.1007/s00138-020-01119-9
– ident: ref28
  doi: 10.1109/TNSE.2020.2990963
– ident: ref21
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref11
  doi: 10.2196/19569
– ident: ref8
  doi: 10.1109/ICASID.2019.8925267
– ident: ref13
  doi: 10.7759/cureus.9448
SSID ssj0019757
Score 2.6272676
Snippet (Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17431
SubjectTerms Artificial intelligence
Attention
Bacterial diseases
Computer networks
convolutional block attention module
convolutional neural network
COVID-19
diagnosis
Labeling
Lung
Modules
Testing
Three-dimensional displays
Ultrasonic imaging
VGG
Title AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM
URI https://ieeexplore.ieee.org/document/9363925
https://www.ncbi.nlm.nih.gov/pubmed/36346097
https://www.proquest.com/docview/2714896180
https://www.proquest.com/docview/2734165007
https://pubmed.ncbi.nlm.nih.gov/PMC9564036
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbaXrYd9mj38NYNGrDTMKWKrYe1W5o27QokO3QNcjNkmUGLFU7ROofs14-yHaMpimE3A6QFWSTBjyZFAnxRORpvYs2tk5ZLncdkUoXkhJRlLrzVRd1IezzRpxfybKZmW_CtuwuDiHXxGfbCY53LLxZ-GX6VHdiE_GmstmHbGNvc1eoyBtbUXT3JgAWXiZm1Gcy-sAdn58cTigTjfo_wMbmzeMMH1UNVHsOXD8sk7_md0QsYr3fclJv87i2rvOf_PGjm-L-f9BKetwCUDRqNeQVbWO7Cs3ttCXfhSTsZ_XK1B6PBdDL8zgZV1dRF8kNyewWbnpzw82p1jWzS1JEzAr9s-HP644j3LTtqCviu7li-YsPDwfg1XIyOfw1PeTt7gXspTcURnRBF6qWdm753czuXqcvNXCcSnfbOO03IUkhUaRJAEiqi-iSNc0PhuZDJG9gpFyW-A2ZTMnLplMJUkytEa0gHPAlCq0IqV0Qg1tLIfNuYPMzHuM7qAEXYLAgwCwLMWgFG8LV75abpyvEv5r1w7h1je-QR7K9FnrV2e5fFhsLDMARHRPC5I5PFhTSKK3GxDDzk-QnYChPB20ZDurVpaamFJYrZ0J2OIXTz3qSUV5d1V28KVCXBifeP7_YDPI3DxYswvELtw051u8SPBIeq_FNtB38BFrYC5Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8xeGB7GAzGlsE2T9rTNBc38Ue8t1IohdHsAaj6FjmOK9BQOo30ofvrd07SiCI07S3SXSzHd6f7Xe58B_BZZE5ZFUqqDdeUyyxEk8o5RaTMM2a1zKtG2qNEDq_5-URM1uBrexfGOVcVn7mOf6xy-fnMzv2vskMdoT8NxTPYEBhVqPq2Vpsz0Krq64kmzCiP1KTJYXaZPjy_PEkwFgy7HUTI6NDCFS9UjVV5CmE-LpR84HkGWzBa7rkuOPnZmZdZx_551M7xfz9qG142EJT0ap15BWuu2IEXDxoT7sBmMxv9ZrELg9446X8jvbKsKyPpETq-nIxPT-llubhzJKkryQnCX9L_MT47pl1NjusSvtt7ki1I_6g3eg3Xg5Or_pA20xeo5VyV1DnDWB5brqeqa81UT3lsMjWVEXdGWmONRGzJuBNx5GGSE0i1URxmCgN0xqM9WC9mhXsLRMdo5twI4WKJztBphVpgURBS5FyYPAC2lEZqm9bkfkLGXVqFKEynXoCpF2DaCDCAL-0rv-q-HP9i3vXn3jI2Rx7AwVLkaWO592moMED0Y3BYAJ9aMtqcT6SYws3mngd9P0JbpgJ4U2tIuzYuzSXTSFErutMy-H7eq5Ti9qbq642hKkdA8e7p3X6EzeHV6CK9OEu-78Pz0F_D8KMsxAGsl7_n7j2CozL7UNnEX9JtBjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AVNC%3A+Attention-Based+VGG-Style+Network+for+COVID-19+Diagnosis+by+CBAM&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Shui-Hua&rft.au=Fernandes%2C+Steven+Lawrence&rft.au=Zhu%2C+Ziquan&rft.au=Zhang%2C+Yu-Dong&rft.date=2022-09-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=22&rft.issue=18&rft.spage=17431&rft.epage=17438&rft_id=info:doi/10.1109%2FJSEN.2021.3062442&rft.externalDocID=9363925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon