AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM

(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects....

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 18; pp. 17431 - 17438
Main Authors Wang, Shui-Hua, Fernandes, Steven Lawrence, Zhu, Ziquan, Zhang, Yu-Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 15.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3062442

Cover

More Information
Summary:(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2021.3062442