Finite element validation dataset of additively manufactured equal angle section stub columns
This article provides experimental and numerical data pertaining to the compressive testing and model calibration for a novel design of 316 L stainless steel equal angle sections (EAS) produced through additive manufacturing, wherein each leg of the EAS is replaced by a wavy surface resembling high...
Saved in:
Published in | Data in brief Vol. 54; p. 110318 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-3409 2352-3409 |
DOI | 10.1016/j.dib.2024.110318 |
Cover
Summary: | This article provides experimental and numerical data pertaining to the compressive testing and model calibration for a novel design of 316 L stainless steel equal angle sections (EAS) produced through additive manufacturing, wherein each leg of the EAS is replaced by a wavy surface resembling high order buckling modes of the flat plate. The experimental data were acquired from testing 9 unique stub column sections, in all combinations of 3 different thicknesses and 2 wave magnitudes, with a control section provided for each thickness. The provided numerical data was produced to calibrate a finite element model of the tested sections by varying imperfection magnitudes, and selected values fit strongly to the physical tests. Both physical and numerical tests data herein are given in two parts each, one summary spreadsheet describing section geometry and peak load, and one more detailed spreadsheet providing load-displacement history for all physical sections and selected finite element sections. This data provides insight into finite element analysis of additively manufactured stainless steel sections, making it valuable for the validation of numerical models and stainless steel material behaviour. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2024.110318 |