Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex
Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less inv...
        Saved in:
      
    
          | Published in | Journal of neural engineering Vol. 9; no. 3; pp. 36006 - 1-16 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          IOP Publishing
    
        01.06.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1741-2560 1741-2552 1741-2552  | 
| DOI | 10.1088/1741-2560/9/3/036006 | 
Cover
| Abstract | Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies. | 
    
|---|---|
| AbstractList | Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies. Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linoear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 plus or minus 0.11), and the r at 3.2 mm was still as high as 0.55 plus or minus 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies. Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.  | 
    
| Author | Suzuki, Takafumi Sato, Masa-aki Kawato, Mitsuo Watanabe, Hidenori Nambu, Atsushi Nishimura, Yukio Isa, Tadashi  | 
    
| Author_xml | – sequence: 1 givenname: Hidenori surname: Watanabe fullname: Watanabe, Hidenori email: watanabe@nips.ac.jp organization: Advanced Telecommunications Research Institute International Neural Information Analysis Laboratories, Kyoto, Japan – sequence: 2 givenname: Masa-aki surname: Sato fullname: Sato, Masa-aki organization: Advanced Telecommunications Research Institute International Neural Information Analysis Laboratories, Kyoto, Japan – sequence: 3 givenname: Takafumi surname: Suzuki fullname: Suzuki, Takafumi organization: The University of Tokyo Graduate School of Information Science and Technology, Tokyo, Japan – sequence: 4 givenname: Atsushi surname: Nambu fullname: Nambu, Atsushi organization: The Graduate University for Advanced Studies , Kanagawa, Japan – sequence: 5 givenname: Yukio surname: Nishimura fullname: Nishimura, Yukio organization: Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency, Tokyo, Japan – sequence: 6 givenname: Mitsuo surname: Kawato fullname: Kawato, Mitsuo organization: Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International , Kyoto, Japan – sequence: 7 givenname: Tadashi surname: Isa fullname: Isa, Tadashi organization: The Graduate University for Advanced Studies , Kanagawa, Japan  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22570195$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU2L1TAYhYOMOB_6D0SydNO5bz7buJNBHWFAEF2HTPp2yNg21yQdvHt_uCm948KFs0pTnudAzjknJ3OckZDXDC4ZdN2OtZI1XGnYmZ3YgdAA-hk5O_5W_OTvt4ZTcp7zPYBgrYEX5JRz1QIz6oz8_oo-zrmkxZcQZxoHOsUHnHAuTcLRFexpmEtyPqYSvBupq-BDKAc6pDjRKfgUGxzRlxQ3Jt4lN1GXkjvQHO5mN-YaUWPnH3ig-xQmlw71WmKiq4G_XpLnQ6Xw1fG8IN8_fvh2dd3cfPn0-er9TeOlbEsjmOolaDCDx4Fj1_mh7ww4eau9B95z7pl3PROeDcpL07dCcGgVZ05yr7i4IG-33H2KPxfMxU4hexxHN2NcsmVSmLYDrfTTKDCttZFSVPTNEV1uJ-zt8YX2seQKvNuAWlXOCQfrQ3Fr3bXXMNYsuy5q17nsOpc1Vtht0SrLf-TH_Cc02LQQ9_Y-Lmmd4f_KH17ktJE | 
    
| CODEN | JNEIEZ | 
    
| CitedBy_id | crossref_primary_10_1371_journal_pone_0072085 crossref_primary_10_1016_j_neuroimage_2015_09_007 crossref_primary_10_1016_j_neuroimage_2013_12_020 crossref_primary_10_1038_s41467_019_12647_y crossref_primary_10_1016_j_neures_2014_05_005 crossref_primary_10_1109_TBCAS_2016_2514522 crossref_primary_10_1016_j_neuroscience_2016_06_024 crossref_primary_10_1371_journal_pone_0083534 crossref_primary_10_1016_j_neuroimage_2014_12_081 crossref_primary_10_1088_1361_6439_aab061 crossref_primary_10_1371_journal_pone_0047992 crossref_primary_10_3902_jnns_19_112 crossref_primary_10_1016_j_neures_2014_06_010 crossref_primary_10_1371_journal_pone_0047749 crossref_primary_10_1016_j_tics_2024_09_013 crossref_primary_10_1016_j_neures_2014_03_010 crossref_primary_10_3390_s24216847 crossref_primary_10_3390_mi10010062 crossref_primary_10_1016_j_neuron_2014_12_018  | 
    
| Cites_doi | 10.1016/j.neuroimage.2008.06.018 10.1152/jn.1999.82.5.2676 10.1016/j.neuron.2009.08.016 10.1016/j.neuron.2006.09.019 10.1038/nn890 10.1088/1741-2560/1/2/001 10.1016/j.jphysparis.2005.09.016 10.1093/brain/121.12.2301 10.1016/j.neuroscience.2005.10.029 10.1126/science.1154735 10.1523/JNEUROSCI.20-06-02307.2000 10.1088/1741-2560/6/1/016006 10.1038/nature04970 10.1146/annurev.psych.093008.100503 10.1016/j.cub.2008.02.023 10.1152/jn.1975.38.2.369 10.1002/ana.22613 10.1146/annurev.neuro.051508.135241 10.1016/j.neuroimage.2011.06.084 10.1152/jn.00532.2010 10.1038/nature06996 10.1038/nrn2653 10.1016/j.neunet.2008.06.012 10.1152/physrev.1985.65.1.37 10.1016/j.neuroimage.2009.04.050 10.1088/1741-2560/6/3/036003 10.1113/jphysiol.2006.125948 10.1016/j.neuroimage.2010.08.003 10.1523/JNEUROSCI.2325-10.2010 10.1016/j.neuron.2008.11.016 10.1523/JNEUROSCI.2848-08.2008 10.1016/j.neuron.2011.11.006 10.1016/j.neuron.2010.02.001 10.1523/JNEUROSCI.21-23-09377.2001 10.1523/JNEUROSCI.0816-05.2005 10.1088/1741-2560/7/2/026004 10.1016/j.neuroimage.2010.09.057 10.1523/JNEUROSCI.19-14-06200.1999 10.1038/nn1158 10.1523/JNEUROSCI.02-11-01527.1982 10.1016/j.neuron.2005.03.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 IOP Publishing Ltd | 
    
| Copyright_xml | – notice: 2012 IOP Publishing Ltd | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK  | 
    
| DOI | 10.1088/1741-2560/9/3/036006 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| DocumentTitleAlternate | Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex | 
    
| EISSN | 1741-2552 | 
    
| EndPage | 1-16 | 
    
| ExternalDocumentID | 22570195 10_1088_1741_2560_9_3_036006 jne415786  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP AAYXX ADEQX AEINN AERVB CITATION 02O ACARI AGQPQ AHSEE ARNYC BBWZM CEBXE CGR CUY CVF ECM EIF NPM 7X8 7TK  | 
    
| ID | FETCH-LOGICAL-c447t-315d40609fcef2e88cfd890a4b6cc02d22c1cad13c1f5c49d733207521a42c523 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 1741-2560 1741-2552  | 
    
| IngestDate | Fri Sep 05 13:42:45 EDT 2025 Thu Oct 02 06:03:11 EDT 2025 Mon Jul 21 05:53:30 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Wed Oct 01 02:41:26 EDT 2025 Wed Aug 21 03:33:55 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c447t-315d40609fcef2e88cfd890a4b6cc02d22c1cad13c1f5c49d733207521a42c523 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 22570195 | 
    
| PQID | 1016669443 | 
    
| PQPubID | 23479 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_citationtrail_10_1088_1741_2560_9_3_036006 proquest_miscellaneous_1016669443 iop_journals_10_1088_1741_2560_9_3_036006 proquest_miscellaneous_1439780656 pubmed_primary_22570195 crossref_primary_10_1088_1741_2560_9_3_036006  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-06-01 | 
    
| PublicationDateYYYYMMDD | 2012-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Journal of neural engineering | 
    
| PublicationTitleAbbrev | JNE | 
    
| PublicationTitleAlternate | J. Neural Eng | 
    
| PublicationYear | 2012 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | Freeman J A (7) 1975; 38 23 24 Pitts W Von Foerster (28) 1952 26 27 29 Ohara S (25) 2001; 21 Ball T (2) 2009; 6 Marsden J F (17) 2000; 20 Zanos S (44) 2008; 2008 Mitzdorf U (20) 1985; 65 30 10 32 11 33 12 34 Georgopoulos A P (9) 1982; 2 14 36 37 16 38 39 18 19 Moran D W (22) 1999; 82 Leuthardt E C (15) 2004; 1 1 Kocsis B (13) 1999; 19 3 5 6 8 Chao Z C (4) 2010; 3 Slutzky M W (35) 2010; 7 Rubehn B (31) 2009; 6 40 41 42 21 43  | 
    
| References_xml | – ident: 8 doi: 10.1016/j.neuroimage.2008.06.018 – volume: 82 start-page: 2676 year: 1999 ident: 22 publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.5.2676 – ident: 41 doi: 10.1016/j.neuron.2009.08.016 – ident: 34 doi: 10.1016/j.neuron.2006.09.019 – ident: 26 doi: 10.1038/nn890 – volume: 1 start-page: 63 issn: 1741-2560 year: 2004 ident: 15 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/1/2/001 – ident: 18 doi: 10.1016/j.jphysparis.2005.09.016 – ident: 6 doi: 10.1093/brain/121.12.2301 – ident: 36 doi: 10.1016/j.neuroscience.2005.10.029 – ident: 14 doi: 10.1126/science.1154735 – volume: 2008 start-page: 5939 year: 2008 ident: 44 publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 20 start-page: 2307 year: 2000 ident: 17 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-06-02307.2000 – volume: 6 issn: 1741-2552 year: 2009 ident: 2 publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/6/1/016006 – ident: 11 doi: 10.1038/nature04970 – ident: 1 doi: 10.1146/annurev.psych.093008.100503 – ident: 21 doi: 10.1016/j.cub.2008.02.023 – volume: 38 start-page: 369 year: 1975 ident: 7 publication-title: J. Neurophysiol. doi: 10.1152/jn.1975.38.2.369 – ident: 43 doi: 10.1002/ana.22613 – ident: 10 doi: 10.1146/annurev.neuro.051508.135241 – ident: 27 doi: 10.1016/j.neuroimage.2011.06.084 – ident: 3 doi: 10.1152/jn.00532.2010 – ident: 40 doi: 10.1038/nature06996 – ident: 24 doi: 10.1038/nrn2653 – ident: 37 doi: 10.1016/j.neunet.2008.06.012 – volume: 65 start-page: 37 year: 1985 ident: 20 publication-title: Physiol. Rev. doi: 10.1152/physrev.1985.65.1.37 – ident: 23 doi: 10.1016/j.neuroimage.2009.04.050 – volume: 6 issn: 1741-2552 year: 2009 ident: 31 publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/6/3/036003 – ident: 42 doi: 10.1113/jphysiol.2006.125948 – ident: 39 doi: 10.1016/j.neuroimage.2010.08.003 – ident: 5 doi: 10.1523/JNEUROSCI.2325-10.2010 – ident: 12 doi: 10.1016/j.neuron.2008.11.016 – ident: 29 doi: 10.1523/JNEUROSCI.2848-08.2008 – ident: 16 doi: 10.1016/j.neuron.2011.11.006 – ident: 32 doi: 10.1016/j.neuron.2010.02.001 – volume: 21 start-page: 9377 year: 2001 ident: 25 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-23-09377.2001 – ident: 30 doi: 10.1523/JNEUROSCI.0816-05.2005 – volume: 7 issn: 1741-2552 year: 2010 ident: 35 publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/7/2/026004 – ident: 38 doi: 10.1016/j.neuroimage.2010.09.057 – volume: 19 start-page: 6200 year: 1999 ident: 13 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-14-06200.1999 – volume: 3 start-page: 3 year: 2010 ident: 4 publication-title: Front. Neuroeng. – ident: 19 doi: 10.1038/nn1158 – start-page: 159 year: 1952 ident: 28 publication-title: Cybernetics. Trans. 9th Conf. Josiah Macy Foundation – volume: 2 start-page: 1527 year: 1982 ident: 9 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.02-11-01527.1982 – ident: 33 doi: 10.1016/j.neuron.2005.03.004  | 
    
| SSID | ssj0031790 | 
    
| Score | 2.128165 | 
    
| Snippet | Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate... | 
    
| SourceID | proquest pubmed crossref iop  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 36006 | 
    
| SubjectTerms | Algorithms Animals BMI Data Interpretation, Statistical ECoG Electrodes, Implanted Electroencephalography - methods Hand - physiology Hand Strength - physiology LFP Linear Models Macaca Male monkey Motor Cortex - physiology Movement - physiology Psychomotor Performance reach and grasp sparse linear regression User-Computer Interface  | 
    
| Title | Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex | 
    
| URI | https://iopscience.iop.org/article/10.1088/1741-2560/9/3/036006 https://www.ncbi.nlm.nih.gov/pubmed/22570195 https://www.proquest.com/docview/1016669443 https://www.proquest.com/docview/1439780656  | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxUxEA9aL178qh-tVSKI4CHvvXztS46lWIrgx8FCbzGbZEH07ZbXLdie-4d3JslWFGoRb7swmU2yk8lvkvkg5PUyyk4n6VmDqT5V2yyYjbxhireqFTqADY2G4oePzcGhen-kj2qd0xwLMxxX1T-Dx5IouExhdYgzc8DQnOFOPbdzOQcNnFNu35EGwDFG8H36PKliiemnSkRkaTHFzl3D5be96TZ8_3rYmbef_fvk69Tx4nXyfXY6trNw_kdOx_8Y2QNyr0JTulvIH5JbqX9ENnd7MMtXZ_QNzc6i-RR-k1yg2for-SwdOroacurxkeXwmBTpNzw3BuM2n5ZTDKDAOhUUA1roCv0AWa3BU2iynxj167U_o-hVAusCWADbHvQMPS5ZMeB1HNYUW6Sfj8nh_rsvewesFnRgQanlCPpeRwAQC9uF1IlkTOiisQsPIhLCQkQhAg8-chl4p4OycSmlAEwjuFcigMn8hGz0Q5-eEao9WGIgVI0CliJ1gHKNb5e6S42xPOotIqdf6ULNdo5FN364fOtujMPJdjjZzjrpymRvEXbVqo7rBvq38C9dXfYnN9C-mmTJwRLGexnfp-H0JHvZNY1VSv6FBoEjXoIDn6dFEK96KLASIbd6-x9685zcBegnitPbDtkAeUkvAF6N7cu8hC4BMwQYIA | 
    
| linkProvider | IOP Publishing | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIiEu5VGg5WkkhMQhm_UrGx-rwqq8Sg9U6s1y_JAQbLLaphLlzA9nxk4WgVQqxC2R7JHjjMff2DPfEPJ85kVUQdiiQqpP2VTTQntWFZI1suHKgQ-NjuKHo-rwRL49Vacb5GCdC9MtB9M_gcdMFJyncAiIq0vA0KzAnbrUpSjBAoPilEsfN8m1xFWCWXwfj0dzLJCCKmdF5l5j_twlkn7bnzZhDJdDz7QFzW8SPw4-R558mZz3zcR9_4PX8T-_7hbZHiAq3c9dbpON0N4hO_stuOeLC_qCpqDRdBq_Q36g-_qLhJZ2kS66REHeFylNJnj6Gc-PwclNp-YUEymwXgXFxBa6wHjAYqjFk9ukeDFqVyt7QTG6BNYHiACxLdgbuszsGPDadyuKPcK3u-Rk_vrTwWExFHYonJSzHuy-8gAkpjq6EHmoaxd9racWVMW5KfecO-asZ8KxqJzUfiYEB2zDmZXcget8j2y1XRt2CVUWPDJQrkqCSB4ioN3aNjMVQ1Vr5tUeEePvNG5gPcfiG19Nun2va4MTbnDCjTbC5AnfI8W61_BdV7R_Cf_TDMv_7Iq2z0Z9MrCU8X7GtqE7P0vRdlWlpRR_aYMAEi_DQc79rIzrEXKsSMi0evAPo3lKrh-_mpv3b47ePSQ3AA3yHAf3iGyB6oTHgLj65klaUT8BfXMdgQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+movement-related+intracortical+activity+from+micro-electrocorticogram+array+signals+in+monkey+primary+motor+cortex&rft.jtitle=Journal+of+neural+engineering&rft.au=Watanabe%2C+Hidenori&rft.au=Sato%2C+Masa-Aki&rft.au=Suzuki%2C+Takafumi&rft.au=Nambu%2C+Atsushi&rft.date=2012-06-01&rft.eissn=1741-2552&rft.volume=9&rft.issue=3&rft.spage=036006&rft_id=info:doi/10.1088%2F1741-2560%2F9%2F3%2F036006&rft_id=info%3Apmid%2F22570195&rft.externalDocID=22570195 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |