Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex

Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less inv...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 9; no. 3; pp. 36006 - 1-16
Main Authors Watanabe, Hidenori, Sato, Masa-aki, Suzuki, Takafumi, Nambu, Atsushi, Nishimura, Yukio, Kawato, Mitsuo, Isa, Tadashi
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.06.2012
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2560/9/3/036006

Cover

Abstract Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.
AbstractList Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.
Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linoear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 plus or minus 0.11), and the r at 3.2 mm was still as high as 0.55 plus or minus 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.
Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies.
Author Suzuki, Takafumi
Sato, Masa-aki
Kawato, Mitsuo
Watanabe, Hidenori
Nambu, Atsushi
Nishimura, Yukio
Isa, Tadashi
Author_xml – sequence: 1
  givenname: Hidenori
  surname: Watanabe
  fullname: Watanabe, Hidenori
  email: watanabe@nips.ac.jp
  organization: Advanced Telecommunications Research Institute International Neural Information Analysis Laboratories, Kyoto, Japan
– sequence: 2
  givenname: Masa-aki
  surname: Sato
  fullname: Sato, Masa-aki
  organization: Advanced Telecommunications Research Institute International Neural Information Analysis Laboratories, Kyoto, Japan
– sequence: 3
  givenname: Takafumi
  surname: Suzuki
  fullname: Suzuki, Takafumi
  organization: The University of Tokyo Graduate School of Information Science and Technology, Tokyo, Japan
– sequence: 4
  givenname: Atsushi
  surname: Nambu
  fullname: Nambu, Atsushi
  organization: The Graduate University for Advanced Studies , Kanagawa, Japan
– sequence: 5
  givenname: Yukio
  surname: Nishimura
  fullname: Nishimura, Yukio
  organization: Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency, Tokyo, Japan
– sequence: 6
  givenname: Mitsuo
  surname: Kawato
  fullname: Kawato, Mitsuo
  organization: Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International , Kyoto, Japan
– sequence: 7
  givenname: Tadashi
  surname: Isa
  fullname: Isa, Tadashi
  organization: The Graduate University for Advanced Studies , Kanagawa, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22570195$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2L1TAYhYOMOB_6D0SydNO5bz7buJNBHWFAEF2HTPp2yNg21yQdvHt_uCm948KFs0pTnudAzjknJ3OckZDXDC4ZdN2OtZI1XGnYmZ3YgdAA-hk5O_5W_OTvt4ZTcp7zPYBgrYEX5JRz1QIz6oz8_oo-zrmkxZcQZxoHOsUHnHAuTcLRFexpmEtyPqYSvBupq-BDKAc6pDjRKfgUGxzRlxQ3Jt4lN1GXkjvQHO5mN-YaUWPnH3ig-xQmlw71WmKiq4G_XpLnQ6Xw1fG8IN8_fvh2dd3cfPn0-er9TeOlbEsjmOolaDCDx4Fj1_mh7ww4eau9B95z7pl3PROeDcpL07dCcGgVZ05yr7i4IG-33H2KPxfMxU4hexxHN2NcsmVSmLYDrfTTKDCttZFSVPTNEV1uJ-zt8YX2seQKvNuAWlXOCQfrQ3Fr3bXXMNYsuy5q17nsOpc1Vtht0SrLf-TH_Cc02LQQ9_Y-Lmmd4f_KH17ktJE
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1371_journal_pone_0072085
crossref_primary_10_1016_j_neuroimage_2015_09_007
crossref_primary_10_1016_j_neuroimage_2013_12_020
crossref_primary_10_1038_s41467_019_12647_y
crossref_primary_10_1016_j_neures_2014_05_005
crossref_primary_10_1109_TBCAS_2016_2514522
crossref_primary_10_1016_j_neuroscience_2016_06_024
crossref_primary_10_1371_journal_pone_0083534
crossref_primary_10_1016_j_neuroimage_2014_12_081
crossref_primary_10_1088_1361_6439_aab061
crossref_primary_10_1371_journal_pone_0047992
crossref_primary_10_3902_jnns_19_112
crossref_primary_10_1016_j_neures_2014_06_010
crossref_primary_10_1371_journal_pone_0047749
crossref_primary_10_1016_j_tics_2024_09_013
crossref_primary_10_1016_j_neures_2014_03_010
crossref_primary_10_3390_s24216847
crossref_primary_10_3390_mi10010062
crossref_primary_10_1016_j_neuron_2014_12_018
Cites_doi 10.1016/j.neuroimage.2008.06.018
10.1152/jn.1999.82.5.2676
10.1016/j.neuron.2009.08.016
10.1016/j.neuron.2006.09.019
10.1038/nn890
10.1088/1741-2560/1/2/001
10.1016/j.jphysparis.2005.09.016
10.1093/brain/121.12.2301
10.1016/j.neuroscience.2005.10.029
10.1126/science.1154735
10.1523/JNEUROSCI.20-06-02307.2000
10.1088/1741-2560/6/1/016006
10.1038/nature04970
10.1146/annurev.psych.093008.100503
10.1016/j.cub.2008.02.023
10.1152/jn.1975.38.2.369
10.1002/ana.22613
10.1146/annurev.neuro.051508.135241
10.1016/j.neuroimage.2011.06.084
10.1152/jn.00532.2010
10.1038/nature06996
10.1038/nrn2653
10.1016/j.neunet.2008.06.012
10.1152/physrev.1985.65.1.37
10.1016/j.neuroimage.2009.04.050
10.1088/1741-2560/6/3/036003
10.1113/jphysiol.2006.125948
10.1016/j.neuroimage.2010.08.003
10.1523/JNEUROSCI.2325-10.2010
10.1016/j.neuron.2008.11.016
10.1523/JNEUROSCI.2848-08.2008
10.1016/j.neuron.2011.11.006
10.1016/j.neuron.2010.02.001
10.1523/JNEUROSCI.21-23-09377.2001
10.1523/JNEUROSCI.0816-05.2005
10.1088/1741-2560/7/2/026004
10.1016/j.neuroimage.2010.09.057
10.1523/JNEUROSCI.19-14-06200.1999
10.1038/nn1158
10.1523/JNEUROSCI.02-11-01527.1982
10.1016/j.neuron.2005.03.004
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
Copyright_xml – notice: 2012 IOP Publishing Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1088/1741-2560/9/3/036006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex
EISSN 1741-2552
EndPage 1-16
ExternalDocumentID 22570195
10_1088_1741_2560_9_3_036006
jne415786
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
AAYXX
ADEQX
AEINN
AERVB
CITATION
02O
ACARI
AGQPQ
AHSEE
ARNYC
BBWZM
CEBXE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c447t-315d40609fcef2e88cfd890a4b6cc02d22c1cad13c1f5c49d733207521a42c523
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 13:42:45 EDT 2025
Thu Oct 02 06:03:11 EDT 2025
Mon Jul 21 05:53:30 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Wed Oct 01 02:41:26 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-315d40609fcef2e88cfd890a4b6cc02d22c1cad13c1f5c49d733207521a42c523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22570195
PQID 1016669443
PQPubID 23479
PageCount 16
ParticipantIDs crossref_citationtrail_10_1088_1741_2560_9_3_036006
proquest_miscellaneous_1016669443
iop_journals_10_1088_1741_2560_9_3_036006
proquest_miscellaneous_1439780656
pubmed_primary_22570195
crossref_primary_10_1088_1741_2560_9_3_036006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2012
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Freeman J A (7) 1975; 38
23
24
Pitts W Von Foerster (28) 1952
26
27
29
Ohara S (25) 2001; 21
Ball T (2) 2009; 6
Marsden J F (17) 2000; 20
Zanos S (44) 2008; 2008
Mitzdorf U (20) 1985; 65
30
10
32
11
33
12
34
Georgopoulos A P (9) 1982; 2
14
36
37
16
38
39
18
19
Moran D W (22) 1999; 82
Leuthardt E C (15) 2004; 1
1
Kocsis B (13) 1999; 19
3
5
6
8
Chao Z C (4) 2010; 3
Slutzky M W (35) 2010; 7
Rubehn B (31) 2009; 6
40
41
42
21
43
References_xml – ident: 8
  doi: 10.1016/j.neuroimage.2008.06.018
– volume: 82
  start-page: 2676
  year: 1999
  ident: 22
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.5.2676
– ident: 41
  doi: 10.1016/j.neuron.2009.08.016
– ident: 34
  doi: 10.1016/j.neuron.2006.09.019
– ident: 26
  doi: 10.1038/nn890
– volume: 1
  start-page: 63
  issn: 1741-2560
  year: 2004
  ident: 15
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/2/001
– ident: 18
  doi: 10.1016/j.jphysparis.2005.09.016
– ident: 6
  doi: 10.1093/brain/121.12.2301
– ident: 36
  doi: 10.1016/j.neuroscience.2005.10.029
– ident: 14
  doi: 10.1126/science.1154735
– volume: 2008
  start-page: 5939
  year: 2008
  ident: 44
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 20
  start-page: 2307
  year: 2000
  ident: 17
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-06-02307.2000
– volume: 6
  issn: 1741-2552
  year: 2009
  ident: 2
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/6/1/016006
– ident: 11
  doi: 10.1038/nature04970
– ident: 1
  doi: 10.1146/annurev.psych.093008.100503
– ident: 21
  doi: 10.1016/j.cub.2008.02.023
– volume: 38
  start-page: 369
  year: 1975
  ident: 7
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1975.38.2.369
– ident: 43
  doi: 10.1002/ana.22613
– ident: 10
  doi: 10.1146/annurev.neuro.051508.135241
– ident: 27
  doi: 10.1016/j.neuroimage.2011.06.084
– ident: 3
  doi: 10.1152/jn.00532.2010
– ident: 40
  doi: 10.1038/nature06996
– ident: 24
  doi: 10.1038/nrn2653
– ident: 37
  doi: 10.1016/j.neunet.2008.06.012
– volume: 65
  start-page: 37
  year: 1985
  ident: 20
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1985.65.1.37
– ident: 23
  doi: 10.1016/j.neuroimage.2009.04.050
– volume: 6
  issn: 1741-2552
  year: 2009
  ident: 31
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/6/3/036003
– ident: 42
  doi: 10.1113/jphysiol.2006.125948
– ident: 39
  doi: 10.1016/j.neuroimage.2010.08.003
– ident: 5
  doi: 10.1523/JNEUROSCI.2325-10.2010
– ident: 12
  doi: 10.1016/j.neuron.2008.11.016
– ident: 29
  doi: 10.1523/JNEUROSCI.2848-08.2008
– ident: 16
  doi: 10.1016/j.neuron.2011.11.006
– ident: 32
  doi: 10.1016/j.neuron.2010.02.001
– volume: 21
  start-page: 9377
  year: 2001
  ident: 25
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-23-09377.2001
– ident: 30
  doi: 10.1523/JNEUROSCI.0816-05.2005
– volume: 7
  issn: 1741-2552
  year: 2010
  ident: 35
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/7/2/026004
– ident: 38
  doi: 10.1016/j.neuroimage.2010.09.057
– volume: 19
  start-page: 6200
  year: 1999
  ident: 13
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-14-06200.1999
– volume: 3
  start-page: 3
  year: 2010
  ident: 4
  publication-title: Front. Neuroeng.
– ident: 19
  doi: 10.1038/nn1158
– start-page: 159
  year: 1952
  ident: 28
  publication-title: Cybernetics. Trans. 9th Conf. Josiah Macy Foundation
– volume: 2
  start-page: 1527
  year: 1982
  ident: 9
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.02-11-01527.1982
– ident: 33
  doi: 10.1016/j.neuron.2005.03.004
SSID ssj0031790
Score 2.128165
Snippet Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36006
SubjectTerms Algorithms
Animals
BMI
Data Interpretation, Statistical
ECoG
Electrodes, Implanted
Electroencephalography - methods
Hand - physiology
Hand Strength - physiology
LFP
Linear Models
Macaca
Male
monkey
Motor Cortex - physiology
Movement - physiology
Psychomotor Performance
reach and grasp
sparse linear regression
User-Computer Interface
Title Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex
URI https://iopscience.iop.org/article/10.1088/1741-2560/9/3/036006
https://www.ncbi.nlm.nih.gov/pubmed/22570195
https://www.proquest.com/docview/1016669443
https://www.proquest.com/docview/1439780656
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxUxEA9aL178qh-tVSKI4CHvvXztS46lWIrgx8FCbzGbZEH07ZbXLdie-4d3JslWFGoRb7swmU2yk8lvkvkg5PUyyk4n6VmDqT5V2yyYjbxhireqFTqADY2G4oePzcGhen-kj2qd0xwLMxxX1T-Dx5IouExhdYgzc8DQnOFOPbdzOQcNnFNu35EGwDFG8H36PKliiemnSkRkaTHFzl3D5be96TZ8_3rYmbef_fvk69Tx4nXyfXY6trNw_kdOx_8Y2QNyr0JTulvIH5JbqX9ENnd7MMtXZ_QNzc6i-RR-k1yg2for-SwdOroacurxkeXwmBTpNzw3BuM2n5ZTDKDAOhUUA1roCv0AWa3BU2iynxj167U_o-hVAusCWADbHvQMPS5ZMeB1HNYUW6Sfj8nh_rsvewesFnRgQanlCPpeRwAQC9uF1IlkTOiisQsPIhLCQkQhAg8-chl4p4OycSmlAEwjuFcigMn8hGz0Q5-eEao9WGIgVI0CliJ1gHKNb5e6S42xPOotIqdf6ULNdo5FN364fOtujMPJdjjZzjrpymRvEXbVqo7rBvq38C9dXfYnN9C-mmTJwRLGexnfp-H0JHvZNY1VSv6FBoEjXoIDn6dFEK96KLASIbd6-x9685zcBegnitPbDtkAeUkvAF6N7cu8hC4BMwQYIA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIiEu5VGg5WkkhMQhm_UrGx-rwqq8Sg9U6s1y_JAQbLLaphLlzA9nxk4WgVQqxC2R7JHjjMff2DPfEPJ85kVUQdiiQqpP2VTTQntWFZI1suHKgQ-NjuKHo-rwRL49Vacb5GCdC9MtB9M_gcdMFJyncAiIq0vA0KzAnbrUpSjBAoPilEsfN8m1xFWCWXwfj0dzLJCCKmdF5l5j_twlkn7bnzZhDJdDz7QFzW8SPw4-R558mZz3zcR9_4PX8T-_7hbZHiAq3c9dbpON0N4hO_stuOeLC_qCpqDRdBq_Q36g-_qLhJZ2kS66REHeFylNJnj6Gc-PwclNp-YUEymwXgXFxBa6wHjAYqjFk9ukeDFqVyt7QTG6BNYHiACxLdgbuszsGPDadyuKPcK3u-Rk_vrTwWExFHYonJSzHuy-8gAkpjq6EHmoaxd9racWVMW5KfecO-asZ8KxqJzUfiYEB2zDmZXcget8j2y1XRt2CVUWPDJQrkqCSB4ioN3aNjMVQ1Vr5tUeEePvNG5gPcfiG19Nun2va4MTbnDCjTbC5AnfI8W61_BdV7R_Cf_TDMv_7Iq2z0Z9MrCU8X7GtqE7P0vRdlWlpRR_aYMAEi_DQc79rIzrEXKsSMi0evAPo3lKrh-_mpv3b47ePSQ3AA3yHAf3iGyB6oTHgLj65klaUT8BfXMdgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+movement-related+intracortical+activity+from+micro-electrocorticogram+array+signals+in+monkey+primary+motor+cortex&rft.jtitle=Journal+of+neural+engineering&rft.au=Watanabe%2C+Hidenori&rft.au=Sato%2C+Masa-Aki&rft.au=Suzuki%2C+Takafumi&rft.au=Nambu%2C+Atsushi&rft.date=2012-06-01&rft.eissn=1741-2552&rft.volume=9&rft.issue=3&rft.spage=036006&rft_id=info:doi/10.1088%2F1741-2560%2F9%2F3%2F036006&rft_id=info%3Apmid%2F22570195&rft.externalDocID=22570195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon